uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Acoustically enriching, large-depth aquatic sampler
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Show others and affiliations
2012 (English)In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 12, no 9, 1619-1628 p.Article in journal (Refereed) Published
Abstract [en]

In marine biology, it is useful to collect water samples when exploring the distribution and diversity of microbial communities in underwater environments. In order to provide, e.g., a miniaturized submersible explorer with the capability of collecting microorganisms, a compact sample enrichment system has been developed. The sampler is 30 mm long, 15 mm wide, and just a few millimetres thick. Integrated in a multilayer steel, polyimide and glass construction is a microfluidic channel with piezoelectric transducers, where microorganism and particle samples are collected and enriched, using acoustic radiation forces for gentle and labelless trapping. High-pressure, latchable valves, using paraffin as the actuation material, at each end of the microfluidic channel keep the collected sample pristine. A funnel structure raised above the surface of the device directs water into the microfluidic channel as the vehicle propels itself or when there is a flow across its hull. The valves proved leak proof to a pressure of 2.1 MPa for 19 hours and momentary pressures of 12.5 MPa, corresponding to an ocean depth of more than 1200 metres. By reactivating the latching mechanism, small leakages through the valves could be remedied, which could thus increase the leak-less operational time. Fluorescent particles, 1.9 µm in diameter, were successfully trapped in the microfluidic channel at flow rates up to 15 ml min-1, corresponding to an 18.5 cm s-1 external flow rate of the sampler. In addition, liquid-suspended GFP-marked yeast cells were successfully trapped.

Place, publisher, year, edition, pages
2012. Vol. 12, no 9, 1619-1628 p.
Keyword [en]
Acoustic, microorganism, enriching, trap, valve, paraffin, sampler, marine, actuator
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-171734DOI: 10.1039/C2LC00025CISI: 000302368200009OAI: oai:DiVA.org:uu-171734DiVA: diva2:512220
Projects
Deeper Access, Deeper Understanding (DADU)
Available from: 2012-03-26 Created: 2012-03-26 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Microsystems Technology for Underwater Vehicle Applications
Open this publication in new window or tab >>Microsystems Technology for Underwater Vehicle Applications
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aim of this thesis work has been to investigate how miniaturization, such as microsystems technology, can potentially increase the scientific throughput in exploration of hard-to-reach underwater environments, such as the subglacial lakes of Antarctica, or other challenging environments, including cave systems and wrecks. A number of instruments and subsystems applicable to miniature submersibles have been developed and studied, and their potential to provide a high functionality density for size-restricted exploration platforms has been assessed.

To provide an onboard camera system with measurement capabilities, simulation and design tools for diffractive optics were developed, and microoptics realized to project reference patterns onto objects to reveal their topography. The influence of murky water on the measurement accuracy was also studied.

For longer-range mapping of the surroundings, and under conditions with even less visibility, the performance of a very small, high-frequency side-scanning sonar was investigated using extensive modeling and physical testing. In particular, the interference on the acoustic beam from tight mounting in a hull was investigated. A range in excess of 30 m and centimeter resolution were obtained.

Besides these systems, which can be used to navigate and map environments, a two-dimensional, thermal sensor for minute flows was developed. Measuring speed and direction of water flows, this sensor can aid in the general classification of the environment and also monitor the submersible’s movement. As the flow of waters in subglacial lakes is estimated to be minute, the detection limit and sensitivity were investigated.

Measurements of water properties are facilitated by the chip-based conductivity, temperature, and depth sensor system developed. Macroscopically, this is an essential oceanographic instrument with which salinity is determined. Contrary to what was expected, MHz frequencies proved to be advantageous for conductivity measurements.

Finally, sampling of water using an acoustically enriching microdevice, and even enabling return of pristine samples via the use of integrated latchable, high-pressure valves, was realized and evaluated. Particularly, investigations of the device’s ability to capture and hold on to microorganisms, were conducted.

Further developed and studied, these devices – as subsystems to miniature submersibles, or as stand-alone instruments – should enable exploration of previously unreachable submerged environments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 88 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 914
Keyword
Aquatic, Submersible, Underwater, Micro, Miniaturized, Sonar, Sidescan, Topography, Laser, Diffractive, Optics, Sampler, Particle, Microorganism, Acoustic, Enriching, Conductivity, Temperature, Depth, CTD, Flow
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-171742 (URN)978-91-554-8323-4 (ISBN)
Public defence
2012-05-11, Polhelmsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Polacksbacken, Uppsala, 10:15 (Swedish)
Opponent
Supervisors
Projects
Deeper Access, Deeper Understanding (DADU)
Available from: 2012-04-20 Created: 2012-03-27 Last updated: 2013-02-20
2. High-Pressure Microfluidics
Open this publication in new window or tab >>High-Pressure Microfluidics
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, some fundamentals and possible applications of high-pressure microfluidics have been explored. Furthermore, handling fluids at high pressures has been addressed, specifically by creating and characterizing strong microvalves and pumps.

A variety of microstructuring techniques was used to realize these microfluidic devices, e.g., etching, lithography, and bonding. To be able to handle high pressures, the valves and pumps need to be strong. This necessitates a strong actuator material. In this thesis, the material of choice is paraffin wax.

A new way of latching paraffin-actuated microvalves into either closed or open position has been developed, using the low thermal conductivity of paraffin to create large thermal gradients within a microactuator. This allows for long open and closed times without power consumption.

In addition, three types of paraffin-actuated pumps are presented: A peristaltic high-pressure pump with integrated temperature control, a microdispensing pump with high repeatability, and a pump system with two pumps working with an offset to reduce flow irregularities. Furthermore, the fundamental behavior of paraffin as a microactuator material has been explored by finite element modeling.

One possibility that arises with high-pressure microfluidics, is the utilization of supercritical fluids for different applications. The unique combination of material properties found in supercritical fluids yields them interesting applications in, e.g., extraction and cleaning. In an attempt to understand the microfluidic behavior of supercritical carbon dioxide, the two-phase flow, with liquid water as the second phase, in a microchannel has been studied and mapped with respect to both flow regime and droplet behavior at a bi-furcating outlet.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 53 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1085
Keyword
phase change, actuator, valve, pump, supercritical fluid
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
urn:nbn:se:uu:diva-208915 (URN)978-91-554-8773-7 (ISBN)
Public defence
2013-11-29, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, 751 21, Uppsala, 09:30 (English)
Opponent
Supervisors
Funder
Swedish Research Council
Available from: 2013-11-07 Created: 2013-10-10 Last updated: 2014-01-23

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Jonsson, JonasOgden, SamHjort, KlasThornell, Greger

Search in DiVA

By author/editor
Jonsson, JonasOgden, SamHjort, KlasThornell, Greger
By organisation
Microsystems Technology
In the same journal
Lab on a Chip
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 893 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf