uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design and synthesis of ribonucleotide reductase inhibitors with activity against Mycobacterium tuberculosis
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Medicinal Chemistry
Research subject
Medicinal Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-172340OAI: oai:DiVA.org:uu-172340DiVA: diva2:514060
Available from: 2012-04-04 Created: 2012-04-04 Last updated: 2012-08-01
In thesis
1. Design and Synthesis of Enzyme Inhibitors Against Infectious Diseases: Targeting Hepatitis C Virus NS3 Protease and Mycobacterium tuberculosis Ribonucleotide Reductase
Open this publication in new window or tab >>Design and Synthesis of Enzyme Inhibitors Against Infectious Diseases: Targeting Hepatitis C Virus NS3 Protease and Mycobacterium tuberculosis Ribonucleotide Reductase
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Infectious diseases, including hepatitis C and tuberculosis, claim the lives of over 15 million people each year. Hepatitis C is caused by the hepatitis C virus (HCV) which infects the liver and can ultimately result in liver transplantation. HCV is very adaptive as a result of its high mutation rate. Thus, there is a potential high risk for the development of drug resistance and also a possible cross-resistance due to a structural similarity between many of the HCV NS3 protease inhibitors currently in clinical trial and on the market, that all are based on a P2-proline or a proline mimic. Thus, part of the research behind this thesis was to explore a new structural P3-P2 unit for the NS3 protease inhibitors, a 2(1H)-pyrazinone moiety. A microwave-assisted protocol was developed, and the 2(1H)-pyrazinone core was synthesized in only 2 × 10 min. A series of optimization steps resulted in several submicromolar 2(1H)-pyrazinone-containing NS3 protease inhibitors that performed well against drug-resistant NS3 protease variants. The key modifications were: exchanging the unstable carbamate P3 capping group for a stable urea functionality, transferring the P2 group from the amino acid residue to the pyrazinone ring and elongating the substituent, and using an aromatic acyl sulfonamide in the P1-P1' position.

The causative agent of tuberculosis is Mycobacterium tuberculosis (Mtb), which currently infects one third of the world's population. No new TB drugs have been approved in nearly 50 years and drug resistance has been observed for all of the current first-line drugs. Because of the importance of identifying novel drug targets, the ribonucleotide reductase (RNR) enzyme was investigated. The RNR enzyme consists of two R1 and two R2 subunits and is essential for Mtb replication. Starting from hits identified in a virtual screening program, a small library of low molecular weight inhibitors of the association between the R1 and R2 subunits was designed and synthesized. The compounds with the strongest affinity for the R1 subunit of RNR were further evaluated in an orthogonal activity assay. Two RNR inhibitors with promising antimycobacterial effects were identified, which can serve as leads in the further optimization of this class of compounds.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 85 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 160
National Category
Medicinal Chemistry
Research subject
Medicinal Chemistry
Identifiers
urn:nbn:se:uu:diva-172341 (URN)978-91-554-8345-6 (ISBN)
Public defence
2012-05-25, BMC, B42, Husargatan 3, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2012-05-03 Created: 2012-04-04 Last updated: 2012-08-01Bibliographically approved

Open Access in DiVA

No full text

By organisation
Organic Pharmaceutical Chemistry
Medicinal Chemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 49113 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf