uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Pharmacokinetic-Pharmacodynamic Modeling of Severity Levels of Extrapyramidal Side Effects with Markov Elements
Division of Pharmacokinetics, Toxicology and Targeting, University Centre for Pharmacy, University of Groningen, The Netherlands.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences. (Pharmacometrics)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Janssen Research & Development, a Division of Janssen Pharmaceutica, Belgium.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Pharmaceutical Sciences
URN: urn:nbn:se:uu:diva-172397OAI: oai:DiVA.org:uu-172397DiVA: diva2:514540
Available from: 2012-04-10 Created: 2012-04-10 Last updated: 2012-08-01
In thesis
1. Population Pharmacodynamic Modeling and Methods for D2-receptor Antagonists
Open this publication in new window or tab >>Population Pharmacodynamic Modeling and Methods for D2-receptor Antagonists
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Early predictions of a potential drug candidate’s time-course of effect and side-effects, based on models describing drug concentrations, drug effects and disease progression, would be valuable to make drug development more efficient. Pharmacodynamic modeling can incorporate and propagate prior knowledge and be used for simulations of different scenarios.

In this thesis three population pharmacodynamic models were developed to describe the antipsychotic effects and the side-effects prolactin elevation and Extra Pyramidal Symptoms (EPS) following administration of D2-receptor antagonists, commonly used in the treatment of schizophrenia.

Model parameter estimates of prolactin elevating potencies of six compounds correlated with in vitro values of receptor affinities, and parameters related to diurnal prolactin variation and tolerance were similar for the different compounds. The developed prolactin model can thereby be used to predict the time-course of prolactin elevation in patients for a drug candidate using information on in vitro affinity to the D2-receptor. Furthermore, the clinical antipsychotic effect and the prolactin elevation was found to correlate on the individual level for the three antipsychotic compounds investigated and a quantitative relation between D2-receptor occupancy in the brain and prolactin elevation was established. These results support the use of prolactin concentrations as a biomarker in drug development or for individual dose adjustments in clinical care.

The developed model for spontaneously reported EPS adverse events, following treatment with one of five antipsychotics drugs, characterized both the duration and severity of EPS. The model successfully described both the proportions and number of transitions between severity grades and was shown to adequately simulate longitudinal categorical EPS data.

Complex pharmacodynamic models are often associated with long estimation times and non-normal distributions of individual parameters. A method for shortening computation times by substituting differential equations for difference equations was evaluated and shown to be valuable for some models. In addition, transformation of distributions allowed for non-normal distributions of between-subject variability to be better characterized and thereby simulation properties were improved.

In conclusion, population pharmacodynamic models for a range of D2-receptor antagonists were developed and together with the investigated methods the models can facilitate prediction of effects and side-effects in drug development.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 69 p.
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 161
population modeling, schizophrenia, D2-antagonists, pharmacodynamics, drug development
National Category
Pharmaceutical Sciences
urn:nbn:se:uu:diva-172540 (URN)978-91-554-8346-3 (ISBN)
Public defence
2012-05-25, B41, Biomedicinskt Centrum, Husargatan 3, Uppsala, 13:15 (English)
Available from: 2012-05-03 Created: 2012-04-11 Last updated: 2012-08-01Bibliographically approved

Open Access in DiVA

No full text

By organisation
Department of Pharmaceutical Biosciences
Pharmaceutical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 192 hits
ReferencesLink to record
Permanent link

Direct link