uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electric structure of dipolarization front at sub-proton scale
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2012 (English)In: Geophysical Research Letters, ISSN 0094-8276, E-ISSN 1944-8007, Vol. 39, L06105- p.Article in journal (Refereed) Published
Abstract [en]

Using Cluster data, we investigate the electric structure of a dipolarization front (DF) - the ion inertial length (c/omega(pi)) scale boundary in the Earth's magnetotail formed at the front edge of an earthward propagating flow with reconnected magnetic flux. We estimate the current density and the electron pressure gradient throughout the DF by both single-spacecraft and multi-spacecraft methods. Comparison of the results from the two methods shows that the single-spacecraft analysis, which is capable of resolving the detailed structure of the boundary, can be applied for the DF we study. Based on this, we use the current density and the electron pressure gradient from the single-spacecraft method to investigate which terms in the generalized Ohm's law balance the electric field throughout the DF. We find that there is an electric field at ion inertia scale directed normal to the DF; it has a duskward component at the dusk flank of DF but a dawnward component at the dawn flank of DF. This electric field is balanced by the Hall (j x B/ne) and electron pressure gradient (del P-e/ne) terms at the DF, with the Hall term being dominant. Outside the narrow DF region, however, the electric field is balanced by the convection (V-i x B) term, meaning the frozen-in condition for ions is broken only at the DF itself. In the reference frame moving with the DF the tangential electric field is almost zero, indicating there is no flow of plasma across the DF and that the DF is a tangential discontinuity. The normal electric field at the DF constitutes a potential drop of similar to 1 keV, which may reflect and accelerate the surrounding ions. 

Place, publisher, year, edition, pages
2012. Vol. 39, L06105- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-173661DOI: 10.1029/2012GL051274ISI: 000302234900005OAI: oai:DiVA.org:uu-173661DiVA: diva2:524456
Available from: 2012-05-02 Created: 2012-05-02 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Fu, Huishan S.Khotyaintsev, Yuri V.Vaivads, AndrisAndré, Mats

Search in DiVA

By author/editor
Fu, Huishan S.Khotyaintsev, Yuri V.Vaivads, AndrisAndré, Mats
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Geophysical Research Letters
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 388 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf