uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Nanotechnology and Functional Materials.
FMC BioPolymer, Newark, DE, USA.
Show others and affiliations
2012 (English)In: Journal of Materials Science, ISSN 0022-2461, E-ISSN 1573-4803, Vol. 47, no 10, 4463-4472 p.Article in journal (Refereed) Published
Abstract [en]

Paper-based conductive electrode materials of polypyrrole (PPy) and nanocellulose (NC) have received much attention lately for applications in non-metal-based energy storage devices, ion exchange, etc. The aim of this study was to study how the primary characteristics of NC raw materials impact and electrochemical properties of conductive NC-PPy composite sheets. Three NC raw materials were used: Cladophora cellulose (NCUU) produced at Uppsala University, Cladophora cellulose (NCFMC) produced at FMC Biopolymer, and microfibrillated cellulose (NCINN) produced at Innventia AB. Composite paper sheets of PPy coated on the substrate NC material were produced. The NC raw materials and the composites were characterized with a battery of techniques to derive their degree of crystallinity, degree of polymerization, specific surface area, pore size distribution, porosity, electron conductivity, charge capacity and tensile properties. It was found that the pore size distribution and overall porosity increase upon coating of NC fibres for all the samples. The charge capacity of the composites was found to decrease with the porosity of the samples. It was further found that the mechanical strength of the pristine NC sheets was largely dependent on the overall porosity, with NCINN having the highest mechanical strength and lowest porosity in the series. The mechanical properties of the composite NC-PPy sheets were significantly diminished as compared with pristine NC sheets because of the impaired H-bonding between fibres and PPy-coated nanofibres. It was concluded that to improve the mechanical properties of PPy-NC sheets, a fraction of additive bare NC fibres is beneficial. Future study may include the effect of both soluble and insoluble additives to improve the mechanical strength of PPy-NC sheets.

Place, publisher, year, edition, pages
2012. Vol. 47, no 10, 4463-4472 p.
National Category
Nano Technology
Research subject
Engineering Science with specialization in Nanotechnology and Functional Materials
Identifiers
URN: urn:nbn:se:uu:diva-173616DOI: 10.1007/s10853-012-6305-6ISI: 000302242700028OAI: oai:DiVA.org:uu-173616DiVA: diva2:525775
Available from: 2012-05-09 Created: 2012-05-02 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Mihranyan, AlbertRazaq, Aamir

Search in DiVA

By author/editor
Mihranyan, AlbertRazaq, Aamir
By organisation
Nanotechnology and Functional Materials
In the same journal
Journal of Materials Science
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 823 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf