uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effects of spin-dependent quasiparticle renormalization in Fe, Co, and Ni photoemission spectra: An experimental and theoretical study
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2012 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 85, no 20, 205109- p.Article in journal (Refereed) Published
Abstract [en]

We have investigated the spin-dependent quasiparticle lifetimes and the strength of electron correlation effects in the ferromagnetic 3d transition metals Fe, Co, and Ni by means of spin- and angle-resolved photoemission spectroscopy. The experimental data are accompanied by state-of-the-art many-body calculations within the dynamical mean-field theory and the three-body scattering approximation, including fully relativistic calculations of the photoemission process within the one-step model. Our quantitative analysis reveals that inclusion of local many-body Coulomb interactions are of ultimate importance for a realistic description of correlation effects in ferromagnetic 3d transition metals. However, we found that more sophisticated many-body calculations with larger modifications in the case of Fe and Co are still needed to improve the quantitative agreement between experiment and theory. In general, it turned out that not only the dispersion behavior of energetic structures should be affected by nonlocal correlations but also the line widths of most of the photoemission peaks are underestimated by the current theoretical approaches. The increasing values of the on-site Coulomb interaction parameter U and the band narrowing of majority spin states obtained when moving from Fe to Ni indicate that the effect of nonlocal correlations becomes weaker with increasing atomic number, whereas correlation effects tend to be stronger.

Place, publisher, year, edition, pages
2012. Vol. 85, no 20, 205109- p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-174902DOI: 10.1103/PhysRevB.85.205109ISI: 000303655800002OAI: oai:DiVA.org:uu-174902DiVA: diva2:529531
Available from: 2012-05-30 Created: 2012-05-30 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Di Marco, IgorEriksson, Olle

Search in DiVA

By author/editor
Di Marco, IgorEriksson, Olle
By organisation
Materials Theory
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 385 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf