uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Nanowired Drug Delivery of Antioxidant Compound H-290/51 Enhances Neuroprotection in Hyperthermia-Induced Neurotoxicity
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Show others and affiliations
2012 (English)In: CNS & Neurological Disorders: Drug Targets, ISSN 1871-5273, E-ISSN 1996-3181, Vol. 11, no 1, 50-64 p.Article, review/survey (Refereed) Published
Abstract [en]

Nanoparticles from the environment or through industrial sources can induce profound alterations in human health, often leading to brain dysfunction. However, it is still unclear whether nanoparticle intoxication could also alter the physiological or pathological responses of additional brain injury, stress response or disease processes. Military personals engaged in combat or peacekeeping operations are often exposed to nanoparticles from various environmental sources, e.g., Ag, Cu, Si, C, Al. In addition, these military personals are often exposed to high environmental heat, or gun and missle explosion injury leading to head or spinal trauma. Thus it is likely that additional CNS injury or stress-induced pathophysiological processes are influenced by nanoparticle intoxication. In this situation, when a combination of nanoparticles and central nervous system (CNS) injury or stress exist together, drug therapy needed to correct these anomalies may not work as effectively as in normal situation. Previous studies from our laboratory show that nanoparticle-intoxicated animals when subjected to hyperthermia resulted in exacerbation of brain pathology. In these animals, antioxidant compounds, e.g., H-290/51 that inhibits free radical formation and induces marked neuroprotection in normal rats after heat stress, failed to protect brain damage when a combination of nanoparticles and heat exposure was used. However, nanowired H-290/51 resulted in better neuroprotection in nanoparticles intoxicated animals after heat stress. Interestingly, high doses of the normal compound induced some neuroprotection in these nanoparticle-treated, heat-stressed rats. These observations suggest that a combination of nanoparticles and heat stress is dangerous and in such situations modification of drug dosage is needed to achieve comparable neuroprotection. In this review possible mechanisms of nanoparticle-induced exacerbation of heat induced neurotoxicity and brain protection achieved by nanowired drug delivery is discussed that is largely based on our own investigations.

Place, publisher, year, edition, pages
2012. Vol. 11, no 1, 50-64 p.
Keyword [en]
Nanoparticles, hyperthermia, heat stress, antioxidants, H-290/51, blood-brain barrier, brain edema, brain pathology, nanowiring, nano-drug delivery
National Category
Anesthesiology and Intensive Care
URN: urn:nbn:se:uu:diva-174979DOI: 10.2174/187152712799960736ISI: 000303449400007PubMedID: 22229325OAI: oai:DiVA.org:uu-174979DiVA: diva2:529754
Available from: 2012-05-31 Created: 2012-05-30 Last updated: 2014-08-14Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sharma, ArunaSharma, Hari Shanker
By organisation
Anaesthesiology and Intensive Care
In the same journal
CNS & Neurological Disorders: Drug Targets
Anesthesiology and Intensive Care

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 249 hits
ReferencesLink to record
Permanent link

Direct link