uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neurotoxicity of Engineered Nanoparticles from Metals
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
2012 (English)In: CNS & Neurological Disorders: Drug Targets, ISSN 1871-5273, E-ISSN 1996-3181, Vol. 11, no 1, 65-80 p.Article in journal (Refereed) Published
Abstract [en]

Human exposure to metal nanoparticles such as silver (Ag), copper (Cu) or aluminum (Al) is very common at work places involving automobile, aerospace industry, gun factories or defense related explosives making. Additional sources of exposure to engineered nanoparticles affecting human health are chemical, electronics and communication industries. The nanoparticles (ca. 20 to 120 nm) easily enter the body through inhalation and are deposited into various tissues and organs including brain, where they could stay there for long periods of time. However, the pathophysiological reactions of nanoparticles in vivo on brain function are still not well known. Previous observations from our laboratory showed that engineered nanoparticles from Ag, Cu or Al (50-60 nm) when administered through systemic or intracerebral routes in rats or mice induce neurotoxicity depending on their type, dose and duration of the exposure. These nanoparticles also altered sensory, motor and cognitive functions at the time of development of brain pathologies. Thus, neuronal, glial, axonal and endothelial cell damages are most pronounced following Ag and Cu intoxication as compared to Al in identical doses that are more pronounced in mice as compared to rats of similar age group. The functional significance of these findings and the probable mechanisms of metal nanoparticle-induced neurotoxicity are discussed in this review largely based on our own investigations.

Place, publisher, year, edition, pages
2012. Vol. 11, no 1, 65-80 p.
Keyword [en]
Engineered nanoparticles, silver, copper, aluminum, blood-brain barrier, brain edema, cerebral blood flow, neuropathology, astrocytes, myelin, sensory-motor functions, cognitive functions, brain pathology
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-174980DOI: 10.2174/187152712799960817ISI: 000303449400008OAI: oai:DiVA.org:uu-174980DiVA: diva2:529756
Available from: 2012-05-31 Created: 2012-05-30 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Sharma, Hari ShankerSharma, Aruna

Search in DiVA

By author/editor
Sharma, Hari ShankerSharma, Aruna
By organisation
Anaesthesiology and Intensive Care
In the same journal
CNS & Neurological Disorders: Drug Targets
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 527 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf