uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets
Show others and affiliations
2012 (English)In: Experimental astronomy (Print), ISSN 0922-6435, E-ISSN 1572-9508, Vol. 33, no 2-3, 753-791 p.Article in journal (Refereed) Published
Abstract [en]

The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.

Place, publisher, year, edition, pages
2012. Vol. 33, no 2-3, 753-791 p.
Keyword [en]
Uranus, Ice Giant, Orbiter, Giant planet atmosphere, Ring system, Interior, Dynamo, Magnetosphere, Natural satellite
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-175215DOI: 10.1007/s10686-011-9251-4ISI: 000303466100014OAI: oai:DiVA.org:uu-175215DiVA: diva2:530941
Available from: 2012-06-05 Created: 2012-06-04 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Wahlund, Jan-Erik

Search in DiVA

By author/editor
Wahlund, Jan-Erik
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Experimental astronomy (Print)
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 411 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf