uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of ionization degree on film properties when using high power impulse magnetron sputtering
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Show others and affiliations
2012 (English)In: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, ISSN 0734-2101, E-ISSN 1520-8559, Vol. 30, no 3, 031507- p.Article in journal (Refereed) Published
Abstract [en]

Chromium thin films are deposited by combining direct current magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) on a single cathode in an industrial deposition system. While maintaining a constant deposition rate and unchanged metal ion energy distribution function, the fraction of the total power supplied by either deposition technique is altered, and thereby also the metal ion to metal neutral ratio of the deposition flux. It is observed that the required total average power needed to be proportionally increased as the HiPIMS fraction is increased to be able to keep a constant deposition rate. The influence on microstructure, electrical, and electrochemical properties of the films is investigated and shows improvements with the use of HiPIMS. However, considerable influence of the studied properties occurs already when only some 40% of the total power is supplied by the HiPIMS technique. Further increase of the HiPIMS power fraction results in comparatively minor influence of the studied properties yet significant deposition rate efficiency reduction. The results show that the degree of ionization can be controlled separately, and that the advantages associated with using HiPIMS can be obtained while much of the deposition rate reduction, often reported for HiPIMS, can be avoided.

Place, publisher, year, edition, pages
2012. Vol. 30, no 3, 031507- p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:uu:diva-176248DOI: 10.1116/1.3700227ISI: 000303602800018OAI: oai:DiVA.org:uu-176248DiVA: diva2:535055
Available from: 2012-06-19 Created: 2012-06-18 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Björefors, Fredrik

Search in DiVA

By author/editor
Björefors, Fredrik
By organisation
Structural Chemistry
In the same journal
Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 764 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf