uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Assessing Relative Bioactivity of Chemical Substances Using Quantitative Molecular Network Topology Analysis
Show others and affiliations
2012 (English)In: Journal of Chemical Information and Modeling, ISSN 1549-9596, Vol. 52, no 5, 1238-1249 p.Article in journal (Refereed) Published
Abstract [en]

Structurally different chemical substances may cause similar systemic effects in mammalian cells. It is therefore necessary to go beyond structural comparisons to quantify similarity in terms of their bioactivities. In this work, we introduce a generic methodology to achieve this on the basis of Network Biology principles and using publicly available molecular network topology information. An implementation of this method, denoted QuantMap, is outlined and applied to antidiabetic drugs, NSAIDs, 17 beta-estradiol, and 12 substances known to disrupt estrogenic pathways. The similarity of any pair of compounds is derived from topological comparison of intracellular protein networks, directly and indirectly associated with the respective query chemicals, via a straightforward pairwise comparison of ranked proteins. Although output derived from straightforward chemical/structural similarity analysis provided some guidance on bioactivity, QuantMap produced substance interrelationships that align well with reports on their respective perturbation properties. We believe that QuantMap has potential to provide substantial assistance to drug repositioning, pharmacology evaluation, and toxicology risk assessment.

Place, publisher, year, edition, pages
2012. Vol. 52, no 5, 1238-1249 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-176838DOI: 10.1021/ci200429fISI: 000304385700016OAI: oai:DiVA.org:uu-176838DiVA: diva2:537270
Available from: 2012-06-26 Created: 2012-06-26 Last updated: 2012-06-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Gustafsson, Mats G.
By organisation
Department of Medical Sciences
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 189 hits
ReferencesLink to record
Permanent link

Direct link