uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Functionalization of edge reconstructed graphene nanoribbons by H and Fe: A density functional study
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2012 (English)In: Solid State Communications, ISSN 0038-1098, E-ISSN 1879-2766, Vol. 152, no 18, 1719-1724 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we have studied functionalization of 5-7 edge-reconstructed graphene nanoribbons by ab initio density functional calculations. Our studies show that hydrogenation at the reconstructed edges is favorable in contrast to the case of unreconstructed 6-6 zigzag edges, in agreement with previous theoretical results. Thermodynamical calculations reveal the relative stability of single and dihydro-genated edges under different temperatures and chemical potential of hydrogen gas. From phonon calculations, we find that the lowest optical phonon modes are hardened due to 5-7 edge reconstruction compared to the 6-6 unreconstructed hydrogenated edges. Finally, edge functionalization by Fe atoms reveals a dimerized Fe chain structure along the edges. The magnetic exchange coupling across the edges varies between ferromagnetic and antiferromagnetic ones with the variation of the width of the nanoribbons.

Place, publisher, year, edition, pages
2012. Vol. 152, no 18, 1719-1724 p.
Keyword [en]
Graphene, Functionalization, Magnetism, Phonons, Density functional theory
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:uu:diva-177362DOI: 10.1016/j.ssc.2012.06.028ISI: 000308776600003OAI: oai:DiVA.org:uu-177362DiVA: diva2:540752
Available from: 2012-07-11 Created: 2012-07-11 Last updated: 2017-12-07Bibliographically approved
In thesis
1. First Principles Studies of Functional Materials Based on Graphene and Organometallics
Open this publication in new window or tab >>First Principles Studies of Functional Materials Based on Graphene and Organometallics
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Graphene is foreseen to be the basis of future electronics owing to its ultra thin structure, extremely high charge carrier mobility,  high thermal conductivity etc., which are expected to overcome the size limitation and heat dissipation problem in silicon based transistors. But these great prospects are hindered by the metallic nature of pristine graphene even at charge neutrality point, which allows to flow current even when a transistor is switched off. A part  of the thesis is dedicated to invoke electronic band gaps in graphene to overcome this problem. The concept of quantum confinement has been employed to tune the band gaps in graphene by  dimensional confinement along with the functionalization of the edges of these confined nanostructures. Thermodynamic stability of the functionalized zigzag edges with hydrogen, fluorine and reconstructed edges has been presented in the thesis. Keeping an eye towards the same goal of band gap opening,  a different route has been considered by admixing insulating hexagonal boron nitride (h-BN) with semimetal graphene. The idea has been implemented in two  dimensional h-BN-graphene composites and three dimensional stacked heterostructures. The study reveals the possibility of tuning band gaps by controlling the admixture. Occurrence of defects in graphene has significant effect on its electronic properties. By random insertion of defects, amorphous graphene is studied, revealing a semi-metal to a metal transition.

The field of molecular electronics and spintronics aims towards device realization at the molecular scale. In this thesis, different aspects of magnetic bistability in organometallic molecules have been explored in order to design  practical spintronics devices. Manipulation of spin states in organometallic molecules, specifically metal porphyrin molecules, is achieved by controlling surface–molecule interaction. It has been shown that by strain engineering in defected graphene, the magnetic state of adsorbed molecules can be changed. The spin crossover between different spin states can also be achieved by chemisorption on magnetic surfaces. A significant part of the thesis demonstrates that the surface-molecule interaction not only changes the spin state of the molecule, but allows to manipulate magnetic anisotropies and spin dipole moments via modified ligand fields. Finally, in collaboration with experimentalists, a practical realization of switching surface–molecule magnetic interactions by external magnetic fields is demonstrated.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 90 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1120
Keyword
Graphene, Magnetism, Organometallics, Density functional theory, Electron correlation, Spin switching, Nanoribbons, Exchange interaction, Edge functionalization, Band gap
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-217175 (URN)978-91-554-8869-7 (ISBN)
Public defence
2014-03-14, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2014-02-21 Created: 2014-01-30 Last updated: 2014-04-29
2. Influence of defects and impurities on the properties of 2D materials
Open this publication in new window or tab >>Influence of defects and impurities on the properties of 2D materials
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Graphene, the thinnest material with a stable 2D structure, is a potential alternative for silicon-based electronics. However, zero band gap of graphene causes a poor on-off ratio of current thus making it unsuitable for logic operations. This problem prompted scientists to find other suitable 2D materials. Creating vacancy defects or synthesizing hybrid 2D planar interfaces with other 2D materials, is also quite promising for modifying graphene properties. Experimental productions of these materials lead to the formation of possible defects and impurities with significant influence in device properties. Hence, a detailed understanding of the effects of impurities and defects on the properties of 2D systems is quite important.

In this thesis, detailed studies have been done on the effects of impurities and defects on graphene, hybrid graphene/h-BN and graphene/graphane structures, silicene and transition metal dichalcogenides (TMDs) by ab-initio density functional theory (DFT). We have also looked into the possibilities of realizing magnetic nanostructures, trapped at the vacancy defects in graphene, at the reconstructed edges of graphene nanoribbons, at the planar hybrid h-BN graphene structures, and in graphene/graphane interfaces. A thorough investigation of diffusion of Fe adatoms and clusters by ab-initio molecular dynamics simulations have been carried out along with the study of their magnetic properties. It has been shown that the formation of Fe clusters at the vacancy sites is quite robust. We have also demonstrated that the quasiperiodic 3D heterostructures of graphene and h-BN are more stable than their regular counterpart and certain configurations can open up a band gap. Using our extensive studies on defects, we have shown that defect states occur in the gap region of TMDs and they have a strong signature in optical absorption spectra. Defects in silicene and graphene cause an increase in scattering and hence an increase in local currents, which may be detrimental for electronic devices. Last but not the least, defects in graphene can also be used to facilitate gas sensing of molecules as well as and local site selective fluorination.  

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 100 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1432
Keyword
2D Materials, Defects on 2D materials, Impurities on 2D materials
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-300970 (URN)978-91-554-9699-9 (ISBN)
Public defence
2016-11-11, Polhemsalen Ång/10134, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2016-10-19 Created: 2016-08-16 Last updated: 2016-11-03

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0038109812004073

Authority records BETA

Haldar, SoumyajyotiBhandary, SumantaBhattacharjee, SatadeepEriksson, OlleSanyal, Biplab

Search in DiVA

By author/editor
Haldar, SoumyajyotiBhandary, SumantaBhattacharjee, SatadeepEriksson, OlleSanyal, Biplab
By organisation
Materials Theory
In the same journal
Solid State Communications
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 467 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf