uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Multiplexed in Vivo His-Tagging of Enzyme Pathways for in Vitro Single-Pot Multienzyme Catalysis
Show others and affiliations
2012 (English)In: ACS Synthetic Biology, ISSN 2161-5063, Vol. 1, no 2, 43-52 p.Article in journal (Refereed) Published
Abstract [en]

Protein pathways are dynamic and highly coordinated spatially and temporally, capable of performing a diverse range of complex chemistries and enzymatic reactions with precision and at high efficiency. Biotechnology aims to harvest these natural systems to construct more advanced in vitro reactions, capable of new chemistries and operating at high yield. Here, we present an efficient Multiplex Automated Genome Engineering (MAGE) strategy to simultaneously modify and co-purify large protein complexes and pathways from the model organism Escherichia coli to reconstitute functional synthetic proteomes in vitro. By application of over 110 MAGE cycles, we successfully inserted hexa-histidine sequences into 38 essential genes in vivo that encode for the entire translation machinery. Streamlined co-purification and reconstitution of the translation, protein complex enabled protein synthesis in vitro. Our approach can be applied to a growing area of applications in in vitro one-pot multienzyme catalysis (MEC) to manipulate or enhance in vitro pathways such as natural product or carbohydrate biosynthesis.

Place, publisher, year, edition, pages
2012. Vol. 1, no 2, 43-52 p.
Keyword [en]
Genome engineering, MAGE, cell-free protein synthesis, multienzyme catalysis, protein purification
National Category
Biological Sciences
URN: urn:nbn:se:uu:diva-177638DOI: 10.1021/sb3000029ISI: 000305490100001OAI: oai:DiVA.org:uu-177638DiVA: diva2:541382
Available from: 2012-07-17 Created: 2012-07-17 Last updated: 2014-10-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Forster, Anthony C.
By organisation
Structure and Molecular Biology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 205 hits
ReferencesLink to record
Permanent link

Direct link