uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generalists and specialists along a latitudinal transect: patterns of thermal adaptation in six species of damselflies
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.
2012 (English)In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 93, no 6, 1340-1352 p.Article in journal (Refereed) Published
Abstract [en]

Tropical organisms colonizing temperate environments face reduced average temperatures and dramatic thermal fluctuations. Theoretical models postulate that thermal specialization should be favored either when little environmental variation is experienced within generations or when among-generation variation is small relative to within-generation variation. To test these predictions, we studied six temperate species of damselflies differing in latitudinal distribution. We developed a computer model simulating how organisms experience environmental variation (accounting for diapause and voltinism) and performed a laboratory experiment assaying thermal sensitivities of growth rates. The computer model showed opposing latitudinal trends in among-and within-generation thermal variability: within-generation thermal variability decreased toward higher latitudes, whereas relative levels of among-generation thermal variability peaked at midlatitudes (where a shift in voltinism occurred). The growth experiment showed that low-latitude species were more thermally generalized than mid- and high-latitude species, supporting the prediction that generalists are favored under high levels of within-generation variation. Northern species had steeper, near-exponential reaction norms suggestive of thermal specialization. However, they had strikingly high thermal optima and grew very slowly over most of the thermal range they are expected to experience in the field. This observation is at present difficult to explain. These results highlight the importance of considering interactions between life history and environmental variation when deriving expectations of thermal adaptation.

Place, publisher, year, edition, pages
2012. Vol. 93, no 6, 1340-1352 p.
Keyword [en]
Coenagrion spp., damselflies, developmental plasticity, environmental variability, growth rate, life history, optimality theory, reaction norm, thermal sensitivity, thermal variability
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-178687DOI: 10.1890/11-1910.1ISI: 000305296600012OAI: oai:DiVA.org:uu-178687DiVA: diva2:542630
Available from: 2012-08-02 Created: 2012-08-01 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Johansson, Frank

Search in DiVA

By author/editor
Johansson, Frank
By organisation
Population and Conservation Biology
In the same journal
Ecology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 339 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf