uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Efficiently parallel implementation of the inverse Sherman–Morrison algorithm
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computational Science.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Scientific Computing. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Numerical Analysis.
2012 (English)Report (Other academic)
Place, publisher, year, edition, pages
2012.
Series
Technical report / Department of Information Technology, Uppsala University, ISSN 1404-3203 ; 2012-017
National Category
Computer Science Computational Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-179219OAI: oai:DiVA.org:uu-179219DiVA: diva2:543793
Projects
UPMARCeSSENCE
Available from: 2012-08-08 Created: 2012-08-09 Last updated: 2013-11-29Bibliographically approved
In thesis
1. On some Numerical Methods and Solution Techniques for Incompressible Flow Problems
Open this publication in new window or tab >>On some Numerical Methods and Solution Techniques for Incompressible Flow Problems
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The focus of this work is on numerical solution methods for solving the incompressible Navier-Stokes equations, which consist of a set of coupled nonlinear partial differential equations.

In general, after linearization and finite element discretization in space, the original nonlinear problem is converted into finding the solutions of a sequence of linear systems of equations. Because of the underlying mathematical model, the coefficient matrix of the linear system is indefinite and nonsymmetric of two-by-two block structure. Due to their less demands for computer resources than direct methods, iterative solution methods are chosen to solve these linear systems. In order to accelerate the convergence rate of the iterative methods, efficient preconditioning techniques become essential. How to construct numerically efficient preconditioners for two-by-two block systems arising in the incompressible Navier-Stokes equations has been studied intensively during the past decades, and is also a main concern in this thesis.

The Navier-Stokes equations depend on various problem parameters, such as density and viscosity, that themselves may vary in time and space as in multiphase systems. In this thesis we follow the following strategy. First, we consider the stationary Navier-Stokes equations with constant viscosity and density, and contribute to the search of efficient preconditioners by analyzing and testing the element-by-element approximation method of the Schur complement matrix and the so-called augmented Lagrangian method. Second, the variation of the viscosity is an important factor and affects the behavior of the already known preconditioners, proposed for two-by-two block matrices. To this end, we choose the augmented Lagrangian method and analyse the impact of the variation of the viscosity on the resulting preconditioner. Finally, we consider the Navier-Stokes equations with their full complexity, namely, time dependence, variable density and variable viscosity. Fast and reliable solution methods are constructed based on a reformulation of the original equations and some operator splitting techniques. Preconditioners for the so-arising linear systemsare also analyzed and tested.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 56 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 954
National Category
Computational Mathematics
Research subject
Scientific Computing with specialization in Numerical Analysis
Identifiers
urn:nbn:se:uu:diva-179410 (URN)978-91-554-8429-3 (ISBN)
Public defence
2012-09-24, Room 2446, Polacksbacken, Lägerhyddsvägen 2D, Uppsala, 14:00 (English)
Opponent
Supervisors
Available from: 2012-09-03 Created: 2012-08-14 Last updated: 2013-01-22Bibliographically approved

Open Access in DiVA

No full text

Other links

http://www.it.uu.se/research/publications/reports/2012-017/

Authority records BETA

He, XinHolm, MarcusNeytcheva, Maya

Search in DiVA

By author/editor
He, XinHolm, MarcusNeytcheva, Maya
By organisation
Division of Scientific ComputingNumerical AnalysisComputational Science
Computer ScienceComputational Mathematics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 466 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf