uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Least squares parameter estimation of continuous-time ARX models from discrete-time data
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology. Uppsala University, Teknisk-naturvetenskapliga vetenskapsområdet, Mathematics and Computer Science, Department of Information Technology, Automatic control. AUTOMATIC CONTROL.
1997 (English)In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ISSN 0018-9286, Vol. 42, no 5, 659-673 p.Article in journal (Other scientific) Published
Abstract [en]

When modeling a system from discrete-time data, a continuous-time parameterization is desirable in some situations, In a direct estimation approach, the derivatives are approximated by appropriate differences. For an ARX model this lead to a linear regression. The well-known least squares method would then be very desirable since it can have good numerical properties and low computational burden, in particular for fast or nonuniform sampling. It is examined under what conditions a least squares fit for this linear regression will give adequate results for an ARX model. The choice of derivative approximation is crucial for this approach to be useful. Standard approximations like Euler backward or Euler forward cannot be used directly. The precise conditions on the derivative approximation are derived and analyzed. It is shown that if the highest order derivative is selected with care, a least squares estimate will be accurate. The theoretical analysis is complemented by some numerical examples which provide further insight into the choice of derivative approximation

Place, publisher, year, edition, pages
1997. Vol. 42, no 5, 659-673 p.
Keyword [en]
autoregressive processes; bias compensation; continuous-time stochastic models; derivative approximation; least squares method; linear regression; time series; SAMPLED DATA; IDENTIFICATION
Identifiers
URN: urn:nbn:se:uu:diva-27200OAI: oai:DiVA.org:uu-27200DiVA: diva2:55094
Note
Addresses: Soderstrom T, UPPSALA UNIV, DEPT TECHNOL, SYST & CONTROL GRP, UPPSALA, SWEDEN. UNIV CINCINNATI, DEPT ELECT & COMP ENGN, CINCINNATI, OH 45221.Available from: 2007-02-08 Created: 2007-02-08 Last updated: 2011-01-15

Open Access in DiVA

No full text

Other links

http://ieeexplore.ieee.org/iel4/9/12616/00580871.pdf?isnumber=12616&prod=JNL&arnumber=580871&arSt=659&ared=673&arAuthor=Soderstrom%2C+T.%3B+Fan%2C+H.%3B+Carlsson%2C+B.%3B+Bigi%2C+S

Authority records BETA

Söderström, TCarlsson, B

Search in DiVA

By author/editor
Söderström, TCarlsson, B
By organisation
Department of Information TechnologyAutomatic control

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 365 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf