uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of the hupSL promoter activity in Nostoc punctiforme ATCC 29133
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Photochemistry and Molecular Science.
Show others and affiliations
2009 (English)In: BMC Microbiology, ISSN 1471-2180, E-ISSN 1471-2180, Vol. 11, no 9, 54- p.Article in journal (Refereed) Published
Abstract [en]

BACKGROUND:

In cyanobacteria three enzymes are directly involved in the hydrogen metabolism; a nitrogenase that produces molecular hydrogen, H2, as a by-product of nitrogen fixation, an uptake hydrogenase that recaptures H2 and oxidize it, and a bidirectional hydrogenase that can both oxidize and produce H2.Nostoc punctiforme ATCC 29133 is a filamentous dinitrogen fixing cyanobacterium containing a nitrogenase and an uptake hydrogenase but no bidirectional hydrogenase. Generally, little is known about the transcriptional regulation of the cyanobacterial uptake hydrogenases. In this study gel shift assays showed that NtcA has a specific affinity to a region of the hupSL promoter containing a predicted NtcA binding site. The predicted NtcA binding site is centred at 258.5 bp upstream the transcription start point (tsp). To further investigate the hupSL promoter, truncated versions of the hupSL promoter were fused to either gfp or luxAB, encoding the reporter proteins Green Fluorescent Protein and Luciferase, respectively.

RESULTS:

Interestingly, all hupsSL promoter deletion constructs showed heterocyst specific expression. Unexpectedly the shortest promoter fragment, a fragment covering 57 bp upstream and 258 bp downstream the tsp, exhibited the highest promoter activity. Deletion of the NtcA binding site neither affected the expression to any larger extent nor the heterocyst specificity.

CONCLUSION:

Obtained data suggest that the hupSL promoter in N. punctiforme is not strictly dependent on the upstream NtcA cis element and that the shortest promoter fragment (-57 to tsp) is enough for a high and heterocyst specific expression of hupSL. This is highly interesting because it indicates that the information that determines heterocyst specific gene expression might be confined to this short sequence or in the downstream untranslated leader sequence.

Place, publisher, year, edition, pages
2009. Vol. 11, no 9, 54- p.
National Category
Biological Sciences
Identifiers
URN: urn:nbn:se:uu:diva-180878DOI: 10.1186/1471-2180-9-54OAI: oai:DiVA.org:uu-180878DiVA: diva2:551858
Available from: 2012-09-12 Created: 2012-09-12 Last updated: 2017-12-07

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Stensjö, KarinLindberg, Pia

Search in DiVA

By author/editor
Stensjö, KarinLindberg, Pia
By organisation
Department of Photochemistry and Molecular Science
In the same journal
BMC Microbiology
Biological Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 800 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf