uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
A model-based methodology for the analysis and design of atomic layer deposition processes—Part I: Mechanistic modelling of continuous flow reactors
Department of Chemical Engineering, Lund University.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Department of Chemical Engineering, Lund University.
2012 (English)In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 81, 260-272 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the development of an experimentally validated model that mechanistically comprehends the complex interaction between the gas-phase fluid dynamics, the mass transport of individual species, and the heterogeneous gas–surface reaction mechanism in a continuous cross-flow atomic layer deposition (ALD) reactor. The developed ALD gas–surface reaction mechanism, purely based on consecutive and parallel elementary Eley–Rideal reaction steps, was incorporated into the computational fluid dynamic representation of the equipment-scale. Thereby, the model mechanistically relates local gas-phase conditions in the vicinity of the substrate surface to the transient production and consumption of the fractional surface coverage of chemisorbed species, ultimately underlying epitaxial film growth. The model is oriented towards optimization and control and enables identification of substrate film thickness uniformity sensitivities to process operating parameters, reactor system design and gas flow distribution. For the experimental validation of the derived mathematical model, a detailed experimental investigation with the focus on the impact of process operating parameters on the spatial evolution of ZnO film thickness profile was performed. The controlled deposition of ZnO from Zn(C2H5)2 and H2O was carried out in the continuous cross-flow ALD reactor system F-120 by ASM Microchemistry Ltd. and ex situ film thickness measurements at a discrete set of sampling positions on the substrate were performed using X-ray reflectivity and X-ray fluorescence analysis. The experimental results reported here, underscore the importance of substrate-scale uniformity measurements in developing mechanistic ALD process models with high predictability of the dynamic evolution of the spatially dependent film thickness profile. The experimental validation and extensive mechanistic analysis of the ALD reactor model are presented in the second article of this series.

Place, publisher, year, edition, pages
2012. Vol. 81, 260-272 p.
Keyword [en]
Atomic layer deposition, Ex situ film characterization, Mathematical modelling, Computational fluid dynamics, Transport processes, Reaction engineering
National Category
Other Physics Topics Engineering and Technology
Research subject
Engineering Science with specialization in Electronics
URN: urn:nbn:se:uu:diva-182451DOI: 10.1016/j.ces.2012.07.015ISI: 000307885000025OAI: oai:DiVA.org:uu-182451DiVA: diva2:559822
Available from: 2012-10-10 Created: 2012-10-10 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Törndahl, Tobias
By organisation
Solid State Electronics
In the same journal
Chemical Engineering Science
Other Physics TopicsEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 401 hits
ReferencesLink to record
Permanent link

Direct link