uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
A model-based methodology for the analysis and design of atomic layer deposition processes—Part II: Experimental validation and mechanistic analysis
Department of Chemical Engineering, Lund University.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Department of Chemical Engineering, Lund University.
2013 (English)In: Chemical Engineering Science, ISSN 0009-2509, E-ISSN 1873-4405, Vol. 94, 316-329 p.Article in journal (Refereed) Published
Abstract [en]

This paper demonstrates the experimental validation and mechanistic analysis of the continuous cross-flow atomic layer deposition (ALD) reactor model developed in the first article of this series (Holmqvist et al., in press). A general nonlinear parameter estimation problem was formulated to identify the kinetic parameters involved in the developed ALD gas–surface reaction mechanism, governing ZnO film growth, from ex situ film thickness measurements. The presented methodology for comprehensive model assessment considers the statistical uncertainty of least-squares estimates and its ultimate impact on the model predicted response. Joint inference regions were determined to assess the significance of parameter estimates and results indicate that all estimates involved in the precursor half-reactions were adequately determined. The reparameterization of the Arrhenius equation effectively decreased the characteristically high correlations between Arrhenius parameters, leading to improvement in precision of individual parameter estimates. Model predictions of the spatially dependent film thickness profile with narrow confidence band were in good agreement with both calibration and validation experimental data, respectively, under a wide range of operating conditions. The subsequent extensive theoretical analysis exhibits that the experimentally validated model successfully reproduces the detailed process dynamics revealed by in situ quartz crystal microbalance and quadrupole mass spectroscopy diagnostics, and thereby provides a supplementary analysis tool. Finally, the univariate sensitivity analysis revealed the mechanistic dependence of all the measured process operating parameters on the spatially dependent film thickness profile, resolved at the level of a single pulse sequence. Hence, the presented model-based framework serves as a means to guide future research efforts in the field of ALD process optimization.

Place, publisher, year, edition, pages
2013. Vol. 94, 316-329 p.
Keyword [en]
Atomic layer deposition, Experimental model validation, Parameter identification, Optimisation, Dynamic simulation, Kinetics
National Category
Other Physics Topics Engineering and Technology
Research subject
Engineering Science with specialization in Electronics
URN: urn:nbn:se:uu:diva-182457DOI: 10.1016/j.ces.2012.06.063ISI: 000318613200032OAI: oai:DiVA.org:uu-182457DiVA: diva2:559824
Available from: 2012-10-10 Created: 2012-10-10 Last updated: 2013-06-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Törndahl, Tobias
By organisation
Solid State Electronics
In the same journal
Chemical Engineering Science
Other Physics TopicsEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 432 hits
ReferencesLink to record
Permanent link

Direct link