uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spironucleus mitochondrial remnants suggest that hydrogenosomes are ancient organelles
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Molecular Evolution.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Microbiology. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Biochemistry and Microbiology.
Show others and affiliations
(English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490Article in journal (Refereed) Submitted
Keyword [en]
diplomonad, Spironucleus salmonicida, [FeFe] hydrogenase, hydrogenosome, mitosome, intestinal parasite, Giardia intestinalis
National Category
Microbiology Evolutionary Biology
Research subject
Biology with specialization in Evolutionary Organismal Biology; Biology with specialization in Microbiology; Biology with specialization in Molecular Evolution; Biology with specialization in Molecular Cell Biology
Identifiers
URN: urn:nbn:se:uu:diva-182828OAI: oai:DiVA.org:uu-182828DiVA: diva2:560962
Available from: 2012-10-16 Created: 2012-10-16 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Hidden Diversity Revealed: Genomic, Transcriptomic and Functional Studies of Diplomonads
Open this publication in new window or tab >>Hidden Diversity Revealed: Genomic, Transcriptomic and Functional Studies of Diplomonads
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The diplomonads are a diverse group of eukaryotic microbes found in oxygen limited environments such as the intestine of animals were they may cause severe disease. Among them, the prominent human parasite Giardia intestinalis non-invasively colonizes the small intestine of humans and animals where it induces the gastrointestinal disease giardiasis. Two of the eight genetic groups of G. intestinalis, assemblage A and B, are known to infect humans and have zoonotic potential. At the start of project, genome scale data from assemblage B-H was either sparse or entirely missing.

In this thesis, genome sequencing was performed on the assemblage B isolate GS (Paper I) and the P15 isolate (Paper III) of the hoofed-animals specific assemblage E to investigate the underlying components of phenotypic diversity in Giardia. Comparisons to assemblage A isolate WB revealed large genomic differences; entirely different repertoires of surface antigens, genome rearrangements and isolate specific coding sequences of potential bacterial origin. We established that genomic differences are also manifested at the transcriptome level (Paper VIII). In a follow up analysis (Paper IV) we concluded that the Giardia assemblages are largely reproductively isolated. The large genomic differences observed between Giardia isolates can explain the phenotypic diversity of giardiasis.

The adaptation of diplomonads was further studied in Spironucleus barkhanus (Paper II), a fish commensal of grayling, that is closely related to the fish pathogen Spironucleus salmonicida, causative agent of systemic spironucleosis in salmonid fish. We identified substantial genomic differences in the form of divergent genome size, primary sequence divergence and evidence of allelic sequence heterozygosity, a feature not seen in S. salmonicida.

We devised a transfection system for S. salmonicida (Paper VI) and applied it to the study of the mitochondrial remnant organelle (Paper VII). Our analyses showed that S. salmonicida harbor a hydrogenosome, an organelle with more metabolic capabilities than the mitosome of Giardia. Phylogenetic reconstructions of key hydrogenosomal enzymes showed an ancient origin, indicating a common origin to the hydrogenosome in parabasilids and diplomonads.

In conclusion, the thesis has provided important insights into the adaptation of diplomonads in the present and the distant past, revealing hidden diversity.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2012. 104 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 990
Keyword
Giardia intestinalis, Spironucleus salmonicida, Spironucleus barkhanus, intestinal parasite, hydrogenosome, mitosome, lateral gene transfer, horizontal gene transfer, diplomonad, metamonad, sexual recombination, transfection, protein complex purification
National Category
Microbiology Evolutionary Biology Infectious Medicine
Research subject
Biology with specialization in Evolutionary Organismal Biology; Biology with specialization in Microbiology; Biology with specialization in Molecular Biology; Biology with specialization in Molecular Evolution
Identifiers
urn:nbn:se:uu:diva-182831 (URN)978-91-554-8520-7 (ISBN)
Public defence
2012-12-14, B22, Biomedicinskt centrum (BMC), Husargatan 3, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2012-11-22 Created: 2012-10-16 Last updated: 2013-02-11Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Jerlström-Hultqvist, Jon

Search in DiVA

By author/editor
Jerlström-Hultqvist, Jon
By organisation
MicrobiologyMolecular EvolutionDepartment of Medical Biochemistry and MicrobiologyAnalytical Chemistry
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
MicrobiologyEvolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1268 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf