We perform a theoretical prediction of the structure of amorphous YCrO3. We obtained equivalent amorphous structures by means of two independent first principles density functional theory based methods: molecular dynamics and stochastic quenching. In our structural analysis we include radial and angle distribution functions as well as calculations of bond lengths and average coordination numbers. We find Cr+3 atoms situated in slightly distorted oxygen octahedra throughout the amorphous structures and that the distribution of these octahedra is disordered. The presence of the same Cr+3 local environments that give rise to ferroelectricity in the orthorhombic perovskite structure suggests that the amorphous phase of YCrO3 may also exhibit ferroelectric properties. Copyright (c) EPLA, 2012