uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Show others and affiliations
2012 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 34, 14142-14157 p.Article in journal (Refereed) Published
Abstract [en]

High-resolution X-ray absorption spectroscopy with narrow-band X-ray emission detection, supported by density functional theory calculations (XAES-DFT), was used to study a model complex, ([Fe-2(mu-adt)(CO)(4)(PMe3)(2)] (1, adt = S-CH2-(NCH2Ph)-CH2-S), of the [FeFe] hydrogenase active site. For 1 in powder material (1(powder)), in MeCN solution (1'), and in its three protonated states (1H, 1Hy, 1HHy; H denotes protonation at the adt-N and Hy protonation of the Fe-Fe bond to form a bridging metal hydride), relations between the molecular structures and the electronic configurations were determined. EXAFS analysis and DFT geometry optimization suggested prevailing rotational isomers in MeCN, which were similar to the crystal structure or exhibited rotation of the (CO) ligands at Fe1 (1(CO), 1Hy(CO)) and in addition of the phenyl ring (1H(CO,ph), 1HHy(CO,ph)), leading to an elongated solvent-exposed Fe-Fe bond. Isomer formation, adt-N protonation, and hydride binding caused spectral changes of core-to-valence (pre-edge of the Fe K-shell absorption) and of valence-to-core (K beta(2,5) emission) electronic transitions, and of K alpha RIXS data, which were quantitatively reproduced by DFT. The study reveals (1) the composition of molecular orbitals, for example, with dominant Fe-d character, showing variations in symmetry and apparent oxidation state at the two Fe ions and a drop in MO energies by similar to 1 eV upon each protonation step, (2) the HOMO-LUMO energy gaps, of similar to 2.3 eV for 1(powder) and similar to 2.0 eV for 1', and (3) the splitting between iron d(z(2)) and d(x(2-)y(2)) levels of similar to 0.5 eV for the nonhydride and similar to 0.9 eV for the hydride states. Good correlations of reduction potentials to LUMO energies and oxidation potentials to HOMO energies were obtained. Two routes of facilitated bridging hydride binding thereby are suggested, involving ligand rotation at Fe1 for 1Hy(CO) or adt-N protonation for 1HHy(CO,ph). XAES-DFT thus enables verification of the effects of ligand substitutions in solution for guided improvement of [FeFe] catalysts.

Place, publisher, year, edition, pages
2012. Vol. 134, no 34, 14142-14157 p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-183893DOI: 10.1021/ja304970pISI: 000308043400037OAI: oai:DiVA.org:uu-183893DiVA: diva2:565412
Available from: 2012-11-07 Created: 2012-11-05 Last updated: 2012-11-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ott, Sascha
By organisation
Molecular Biomimetics
In the same journal
Journal of the American Chemical Society
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 375 hits
ReferencesLink to record
Permanent link

Direct link