uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Long-term evolutionary and ecological responses of calcifying phytoplankton to changes in atmospheric CO2
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Palaeobiology.
2012 (English)In: Global Change Biology, ISSN 1354-1013, E-ISSN 1365-2486, Vol. 18, no 12, 3504-3516 p.Article in journal (Refereed) Published
Abstract [en]

Calcifying phytoplankton play an important role in marine ecosystems and global biogeochemical cycles, affecting the transfer of both organic and inorganic carbon from the surface to the deep ocean. Coccolithophores are the most prominent members of this group, being well adapted to low-nutrients environments (e.g., subtropical gyres). Despite urgent concerns, their response to rising atmospheric carbon dioxide levels (pCO 2) and ocean acidification is still poorly understood, and short-term experiments may not extrapolate into longer-term climatic adaptation. Current atmospheric pCO 2 (~390 ppmv) is unprecedented since at least 3 million years ago (Ma), and levels projected for the next century were last seen more than 34 Ma. Hence, a deep-time perspective is needed to understand the long-term effects of high pCO 2 on the biosphere. Here we combine a comprehensive fossil data set on coccolithophore cell size with a novel measure of ecological prominence: Summed Common Species Occurrence Rate (SCOR). The SCOR is decoupled from species richness, and captures changes in the extent to which coccolithophores were common and widespread, based on global occurrences in deep-sea sediments. The size and SCOR records are compared to state-of-the-art data on climatic and environmental changes from 50 to 5 Ma. We advance beyond simple correlations and trends to quantify the relative strength and directionality of information transfer among these records. Coccolithophores were globally more common and widespread, larger, and more heavily calcified in the pre-34 Ma greenhouse world, and declined along with pCO 2 during the Oligocene (34-23 Ma). Our results suggest that atmospheric pCO 2 has exerted an important long-term control on coccolithophores, directly through its availability for photosynthesis or indirectly via weathering supply of resources for growth and calcification.

Place, publisher, year, edition, pages
2012. Vol. 18, no 12, 3504-3516 p.
Keyword [en]
Carbon cycle, Cell size, Climate change, Coccolithophores, Information transfer, Marine phytoplankton, Occurrences
National Category
Earth and Related Environmental Sciences Biological Sciences
URN: urn:nbn:se:uu:diva-184886DOI: 10.1111/gcb.12007ISI: 000310564200003OAI: oai:DiVA.org:uu-184886DiVA: diva2:570919
Available from: 2012-11-20 Created: 2012-11-15 Last updated: 2015-05-26

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Henderiks, Jorijntje
By organisation
In the same journal
Global Change Biology
Earth and Related Environmental SciencesBiological Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 191 hits
ReferencesLink to record
Permanent link

Direct link