uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Verifying nuclear fuel assemblies in wet storages on a partial defect level: A software simulation tool for evaluating the capabilities of the Digital Cherenkov Viewing Device
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. (Nuclear fuel diagnostics and safeguards)
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics. (Nuclear fuel diagnostics and safeguards)
2013 (English)In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, ISSN 0168-9002, E-ISSN 1872-9576, Vol. 698, 66-71 p.Article in journal (Refereed) Published
Abstract [en]

The Digital Cherenkov Viewing Device (DCVD) is an instrument that records the Cherenkov light emitted from irradiated nuclear fuels in wet storages. The presence, intensity and pattern of the Cherenkov light can be used by the International Atomic Energy Agency (IAEA) inspectors to verify that the fuel properties comply with declarations. The DCVD is since several years approved by the IAEA for gross defect verification, i.e. to control whether an item in a storage pool is a nuclear fuel assembly or a non-fuel item [1]. Recently, it has also been endorsed as a tool for partial defect verification, i.e. to identify if a fraction of the fuel rods in an assembly have been removed or replaced. The latter recognition was based on investigations of experimental studies on authentic fuel assemblies and of simulation studies on hypothetic cases of partial defects [2]. This paper describes the simulation methodology and software which was used in the partial defect capability evaluations. The developed simulation procedure uses three stand-alone software packages: the ORIGEN-ARP code [3] used to obtain the gamma-ray spectrum from the fission products in the fuel, the Monte Carlo toolkit Geant4 [4] for simulating the gamma-ray transport in and around the fuel and the emission of Cherenkov light, and the ray-tracing programme Zemax [5] used to model the light transport through the assembly geometry to the DCVD and to mimic the behaviour of its lens system. Furthermore, the software allows for detailed information from the plant operator on power and/or burnup distributions to be taken into account to enhance the authenticity of the simulated images. To demonstrate the results of the combined software packages, simulated and measured DCVD images are presented. A short discussion on the usefulness of the simulation tool is also included

Place, publisher, year, edition, pages
2013. Vol. 698, 66-71 p.
Keyword [en]
DCVD; Cherenkov light; Partial defect; Nuclear fuel; Modelling
National Category
Subatomic Physics
Research subject
Nuclear Physics
Identifiers
URN: urn:nbn:se:uu:diva-185558DOI: 10.1016/j.nima.2012.09.048ISI: 000311576200010OAI: oai:DiVA.org:uu-185558DiVA: diva2:572108
Available from: 2012-11-26 Created: 2012-11-26 Last updated: 2017-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Grape, SophieJacobsson Svärd, Staffan

Search in DiVA

By author/editor
Grape, SophieJacobsson Svärd, Staffan
By organisation
Applied Nuclear Physics
In the same journal
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 957 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf