uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Interactions with DOM and biofilms affect the fate and bioavailability of insecticides to invertebrate grazers
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Limnology.
2012 (English)In: Ecotoxicology, ISSN 0963-9292, E-ISSN 1573-3017, Vol. 21, no 8, 2398-2408 p.Article in journal (Refereed) Published
Abstract [en]

We studied the fate and bioavailability of insecticides in short-term experiments (48 h) with different hydrophobicity (3.8 pM carbofuran, 3.0 pM lindane, and 5.3 pM chlorpyrifos) across gradients in dissolved organic matter (low-, medium-, and high-DOM) in freshwater microcosms, mimicking runoff events of pesticides. The effects of biofilms were studied by including treatments with biofilms cultivated under different DOM-concentrations. The presence of biofilms negatively affected chlorpyrifos water concentrations, indicating rapid sorption of this hydrophobic pesticide, while lindane concentrations instead increased and carbofuran concentrations were unaffected. Associations of lindane and chlorpyrifos with biofilms were 1.6-2.0 times higher in low- and high-DOM than in medium-DOM treatments, indicating that sorption was affected not only by the quantity, but also by the quality of DOM. Although the proportion of pesticides recovered in biofilms was consistently less than 1 % of added pesticide, pesticide concentrations in biofilms were on average more than 75- (carbofuran) and 382-times (lindane) higher than those in water. Snail accumulation of all three pesticides was significantly affected by DOMconcentrations and correlated to pesticide hydrophobicity, but the relationships were not straightforward. For example, carbofuran uptake in treatments without biofilms was higher in low-DOM than in medium- and high-DOM treatments, while chlorpyrifos uptake instead increased across the DOM-gradient. Biofilms played a role only for the uptake of chlorpyrifos, which decreased markedly in the presence of biofilms. Bioconcentration factors (BCF) calculated for snails and biofilms differed for the three pesticides and were related to their sorption behaviour (i.e., hydrophobicity). The relative proportion of pesticide uptake through biofilm consumption was consistently less than 2 %, showing that passive uptake was by far the predominant uptake pathway for all three pesticides.

Place, publisher, year, edition, pages
2012. Vol. 21, no 8, 2398-2408 p.
Keyword [en]
Benthic invertebrates, Bioconcentration factor, Dissolved organic matter, Periphyton, Pesticides, Theodoxus fluviatilis
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-186005DOI: 10.1007/s10646-012-0995-zISI: 000312664900029OAI: oai:DiVA.org:uu-186005DiVA: diva2:572700
Available from: 2012-11-28 Created: 2012-11-27 Last updated: 2013-02-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Bertilsson, Stefan
By organisation
In the same journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 174 hits
ReferencesLink to record
Permanent link

Direct link