uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Finite Element Analysis of the Effect on Employing Thermal Through Vias and Heat Fingers to Increase Heat Transfer to Fluid in Calorimetric Flow Sensors
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Microsystems Technology. (ÅSTC)
2013 (English)In: Sensors and Actuators A-Physical, ISSN 0924-4247, E-ISSN 1873-3069, Vol. 201, 49-57 p.Article in journal (Refereed) Published
Abstract [en]

Measurement results of a robust silicon calorimetric flow sensor with a 25 μm thick silicon dioxide membrane with thermal silicon vias have been compared with results obtained from three-dimensional Finite Element Analysis (FEA). Based on the fabricated device, the sensor has been further developed to include heat-exchanging fingers extending down into the integrated flow channel for increased heat transfer. Using FEA, different designs of the fingers have been compared with respect to signal strength, sensitivity, power consumption and pressure loss in the channel at flow rates from 0 to about 650 sccm. Using heat fingers, the sensor signal was improved by a factor of five. The sensor signal, i.e. the temperature difference between downstream and upstream elements, was more than 60 °C when the central heater was heated 300 °C above room temperature, which was comparable to a thin-membrane device modeled. The maximum sensitivity using the finger design was about 1.4 °C sccm−1, and the maximum power consumption was almost 700 mW, which is considerably higher than for thin-membrane sensors. A figure of merit used for evaluation, was the ratio of signal strength to power consumption. The results show that the device design is a promising concept that is suitable in systems requiring robust monolithically integratable flow sensors.

Place, publisher, year, edition, pages
2013. Vol. 201, 49-57 p.
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Microsystems Technology
Identifiers
URN: urn:nbn:se:uu:diva-186776DOI: 10.1016/j.sna.2013.05.018ISI: 000325836400006OAI: oai:DiVA.org:uu-186776DiVA: diva2:572907
Available from: 2012-11-29 Created: 2012-11-29 Last updated: 2017-12-07Bibliographically approved
In thesis
1. Development of Microcomponents for Attitude and Communication Systems on Small Vehicles in Space and Extreme Environments
Open this publication in new window or tab >>Development of Microcomponents for Attitude and Communication Systems on Small Vehicles in Space and Extreme Environments
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, components intended for vehicles in space and other extreme environments have been realized using microsystems technology to facilitate miniaturized, yet high-performing systems beneficial for small spacecraft and other vehicles with limited size and power.

Cold gas thrusters commonly used on spacecraft basically accelerate a gaseous propellant stored under high pressure. When miniaturized, their performance is reduced because of viscous forces. Here, with a special masking and etching scheme, making silicon micronozzles close to rotationally symmetric, this shortcoming was mitigated as indicated by schlieren imaging of the rocket exhaust and a comparison with conventionally manufactured micronozzles with rectangular cross-sections. Schlieren imaging was also used to detect leakage, quantify thrust vector deviation, and measure shock cell periods in the exhaust. Correlation was made to operational conditions.

Similarly operating zirconia thrusters with integrated heaters and flow sensors were developed to allow for higher operating temperature. Successful testing at 1000°C, suggests that the propellant efficiency could be increased by 7.5%, and also makes them candidates for chemical propulsion.

A silicon thruster operating in rarefied gas regimes was also developed. Being suspended in a silicon dioxide frame reducing heat losses, a total efficiency of 17% was reached.

Relating to the integrated micropropulsion systems, two types of flow sensors were developed. Through finite element modeling, the insertion of sensor fingers in the fluid was shown to be an interesting concept for high-pressure applications.

Utilizing the same principle, a velocity sensor for a miniaturized submersible was developed. With a power consumption below 15 mW, it was able to measure directions with an accuracy of ±8º, and speed with an error less than 22%.

To enable high-speed optical communication between spacecraft, a Free Space Optics communication system, and particularly its dual-axis beam-steering actuator, was developed. Through thermal actuation, optical angles larger than 40º were obtained. A lumped thermal model was used to study design changes, vacuum operation and feedback control.

Understanding and mastering heat transfer in microsystems have been vital in many of the studies conducted. Throughout, advanced micromachining and modeling have been used as a step towards high-performance systems for space and other extreme environments.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 43 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1003
National Category
Other Engineering and Technologies
Research subject
Administrative Law
Identifiers
urn:nbn:se:uu:diva-186862 (URN)978-91-554-8555-9 (ISBN)
Public defence
2013-01-11, Polhelmsalen, Lägerhyddsvägen 1, Uppsala, 10:00 (English)
Supervisors
Available from: 2012-12-21 Created: 2012-11-29 Last updated: 2013-02-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Palmer, KristofferNguyen, HugoThornell, Greger

Search in DiVA

By author/editor
Palmer, KristofferNguyen, HugoThornell, Greger
By organisation
Microsystems Technology
In the same journal
Sensors and Actuators A-Physical
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 859 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf