uu.seUppsala University Publications

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The functional equation of the smoothing transformPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2012 (English)In: Annals of Probability, ISSN 0091-1798, Vol. 40, no 5, 2069-2105 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2012. Vol. 40, no 5, 2069-2105 p.
##### Keyword [en]

Branching process, branching random walk, Choquet-Deny-type functional equation, endogeny, fixed point, general branching process, multiplicative martingales, smoothing transformation, stochastic fixed-point equation, Weibull distribution, weighted branching
##### National Category

Natural Sciences
##### Identifiers

URN: urn:nbn:se:uu:diva-188569DOI: 10.1214/11-AOP670ISI: 000311005600007OAI: oai:DiVA.org:uu-188569DiVA: diva2:578524
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt375",{id:"formSmash:j_idt375",widgetVar:"widget_formSmash_j_idt375",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt381",{id:"formSmash:j_idt381",widgetVar:"widget_formSmash_j_idt381",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt387",{id:"formSmash:j_idt387",widgetVar:"widget_formSmash_j_idt387",multiple:true});
Available from: 2012-12-18 Created: 2012-12-17 Last updated: 2013-03-04Bibliographically approved

Given a sequence T = (T-i)(i >= 1) of nonnegative random variables, a function f on the positive halfline can be transformed to E Pi(i >= 1) f (tT(i)). We study the fixed points of this transform within the class of decreasing functions. By exploiting the intimate relationship with general branching processes, a full description of the set of solutions is established without the moment conditions that figure in earlier studies. Since the class of functions under consideration contains all Laplace transforms of probability distributions on [0, infinity), the results provide the full description of the set of solutions to the fixed-point equation of the smoothing transform, X =(d) Sigma(i >= 1) TiXi, where =(d) denotes equality of the corresponding laws, and X-1, X-2, ... is a sequence of i.i.d. copies of X independent of T. Further, since left-continuous survival functions are covered as well, the results also apply to the fixed-point equation X =(d) inf{X-i/T-i:i >= 1, T-i > 0}. Moreover, we investigate the phenomenon of endogeny in the context of the smoothing transform and, thereby, solve an open problem posed by Aldous and Bandyopadhyay.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1080",{id:"formSmash:lower:j_idt1080",widgetVar:"widget_formSmash_lower_j_idt1080",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1081_j_idt1083",{id:"formSmash:lower:j_idt1081:j_idt1083",widgetVar:"widget_formSmash_lower_j_idt1081_j_idt1083",target:"formSmash:lower:j_idt1081:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});