uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy Level Shifts in Spiro-OMeTAD Molecular Thin Films When Adding Li-TFSI
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Physical Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Show others and affiliations
2012 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 116, no 50, 26300-26305 p.Article in journal (Refereed) Published
Abstract [en]

Hard X-ray photoelectron spectroscopy (HAXPES) has been used to study the effects of adding Li-TFSI to hole conducting molecular thin films of 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). The work shows that a procedure of mixing a Li-TFSI solution into a spiro-OMeTAD solution, and subsequent spin-coating this mixture into a solid thin film causes the Fermi level of the molecular film to move closer to the HOMO level. Hence, adding the Li-TFSI gives similar effects to spiro-OMeTAD as a p-dopant. Specific effects from doping on the valence levels were also characterized. Absorbance measurements also showed that the spiro-OMeTAD film was partially oxidized when Li-TFSI was added before spin-coating. By varying the photon energy in the photoelectron spectroscopy measurements, the probe depth varies between being surface sensitive (<1 nm) and bulk sensitive (inelastic mean free path >= 10 nm). This property was used to follow differences in the composition at different depth of the spiro-OMeTAD/Li-TFSI film. It could be concluded that there was a concentration gradient in the molecular film and that the concentration of Li-TFSI was dominating at the interface between the spiro-OMeTAD/Li-TFSI film and vacuum.

Place, publisher, year, edition, pages
2012. Vol. 116, no 50, 26300-26305 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-193623DOI: 10.1021/jp306433gISI: 000312519600022OAI: oai:DiVA.org:uu-193623DiVA: diva2:603454
Available from: 2013-02-06 Created: 2013-02-05 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Eriksson, Susanna K.Siegbahn, HansJohansson, Erik M. J.Rensmo, Håkan

Search in DiVA

By author/editor
Eriksson, Susanna K.Siegbahn, HansJohansson, Erik M. J.Rensmo, Håkan
By organisation
Molecular and condensed matter physicsPhysical Chemistry
In the same journal
The Journal of Physical Chemistry C
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1088 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf