uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bandgap formation in graphene on Ir(1 1 1) through oxidation
MAX-Lab, Lund University.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Show others and affiliations
2013 (English)In: Applied Surface Science, ISSN 0169-4332, E-ISSN 1873-5584, Vol. 267, 74-76 p.Article in journal, Meeting abstract (Refereed) Published
Abstract [en]

A graphene monolayer on single crystal Ir(111) has been studied using angle-resolved photoemission spectroscopy (ARPES) before and after exposure to atomic oxygen. With increasing oxygen coverage the Dirac cone, centered on the K-point of the Brillouin zone, broadens and finally transforms to a parabolic rather than linear feature, introducing a pronounced energy bandgap at the Fermi level. The opening of a bandgap of at least 0.35 eV was observed at the oxygen exposure close to the saturation coverage.

Place, publisher, year, edition, pages
Elsevier, 2013. Vol. 267, 74-76 p.
Keyword [en]
graphene, oxidation, band gap, adsorbates
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-194077DOI: 10.1016/j.apsusc.2012.07.122ISI: 000314881900018OAI: oai:DiVA.org:uu-194077DiVA: diva2:604181
Conference
11th International Conference on Atomically Controlled Surfaces, Interfaces and Nanostructures, October 3-7, 2011 St. Petersburg, Russia
Available from: 2013-02-08 Created: 2013-02-08 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Controlling Electronic and Geometrical Structure of Honeycomb-Lattice Materials Supported on Metal Substrates: Graphene and Hexagonal Boron Nitride
Open this publication in new window or tab >>Controlling Electronic and Geometrical Structure of Honeycomb-Lattice Materials Supported on Metal Substrates: Graphene and Hexagonal Boron Nitride
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis is focused on various methods of controlling electronic and geometrical structure of two-dimensional overlayers adsorbed on metal surfaces exemplified by graphene and hexagonal boron nitride (h-BN) grown on transition metal (TM) substrates. Combining synchrotron-radiation-based spectroscopic and various microscopic techniques with in situ sample preparation, we are able to trace the evolution of overlayer electronic and geometrical properties in overlayer/substrate systems, as well as changes of interfacial interaction in the latter.It is shown that hydrogen uptake by graphene/TM substrate strongly depends on the interfacial interaction between substrate and graphene, and on the geometrical structure of graphene. An energy gap opening in the electronic structure of graphene on TM substrates upon patterned adsorption of atomic species is demonstrated for the case of atomic oxygen adsorption on graphene/TM’s (≥0.35 eV for graphene/Ir(111)). A non-uniform character of adsorption in this case – patterned adsorption of atomic oxygen on graphene/Ir(111) due to the graphene height modulation is verified. A moderate oxidation of graphene/Ir(111) is found largely reversible. Contrary, oxidation of h-BN/Ir(111) results in replacing nitrogen atoms in the h-BN lattice with oxygen and irreversible formation of the B2O3 oxide-like structure.     

Pronounced hole doping (p-doping) of graphene upon intercalation with active agents – halogens or halides – is demonstrated, the level of the doping is dependent on the agent electronegativity. Hole concentration in graphene on Ir(111) intercalated with Cl and Br/AlBr3 is as high as ~2×1013 cm-2 and ~9×1012 cm-2, respectively.    

Unusual periodic wavy structures are reported for h-BN and graphene grown on Fe(110) surface. The h-BN monolayer on Fe(110) is periodically corrugated in a wavy fashion with an astonishing degree of long-range order, periodicity of 2.6 nm, and the corrugation amplitude of ~0.8 Å. The wavy pattern results from a strong chemical bonding between h-BN and Fe in combination with a lattice mismatch in either [11 ̅1] or [111 ̅] direction of the Fe(110) surface. Two primary orientations of h-BN on Fe(110) can be observed corresponding to the possible directions of lattice match between h-BN and Fe(110).    

Chemical vapor deposition (CVD) formation of graphene on iron is a formidable task because of high carbon solubility in iron and pronounced reactivity of the latter, favoring iron carbide formation. However, growth of graphene on epitaxial iron films can be realized by CVD at relatively low temperatures, and the formation of carbides can be avoided in excess of the carbon-containing precursors. The resulting graphene monolayer creates a periodically corrugated pattern on Fe(110): it is modulated in one dimension forming long waves with a period of ~4 nm parallel to the [001] direction of the substrate, with an additional height modulation along the wave crests. The novel 1D templates based on h-BN and graphene adsorbed on iron can possibly find an application in 1D nanopatterning. The possibility for growing high-quality graphene on iron substrate can be useful for the low-cost industrial-scale graphene production.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 103 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1019
Keyword
graphene, h-BN, electronic structure, adsorption, doping, nano-templates, PES, NEXAFS, LEEM, STM
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-194089 (URN)978-91-554-8598-6 (ISBN)
Public defence
2013-04-05, Häggsalen, Ångström Laboratory, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2013-03-13 Created: 2013-02-08 Last updated: 2013-03-22Bibliographically approved

Open Access in DiVA

fulltext(4983 kB)347 downloads
File information
File name FULLTEXT01.pdfFile size 4983 kBChecksum SHA-512
6430549ace1a8090ba698207895327016eb3af12376fbd592b7bfe71562db1fd3df94da37e932ccb04da4f208ffe93105dd4529f8748a281de404e83b972a9f0
Type fulltextMimetype application/pdf

Other links

Publisher's full text
By organisation
Molecular and condensed matter physicsDepartment of Physics and Astronomy
In the same journal
Applied Surface Science
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 347 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 729 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf