uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Biochemistry and Organic Chemistry, Synthetical Organic Chemistry.
Show others and affiliations
2012 (English)In: Proceedings of SPIE: The International Society for Optical Engineering, 2012, 84582K- p.Conference paper (Refereed)
Abstract [en]

In cell signaling, different perturbations lead to different responses and using traditional biological techniques that result in averaged data may obscure important cell-to-cell variations. The aim of this study was to develop and evaluate a four-inlet microfluidic system that enables single-cell analysis by investigating the effect on Hog1 localization post a selective Hog1 inhibitor treatment during osmotic stress. Optical tweezers was used to position yeast cells in an array of desired size and density inside the microfluidic system. By changing the flow rates through the inlet channels, controlled and rapid introduction of two different perturbations over the cell array was enabled. The placement of the cells was determined by diffusion rates flow simulations. The system was evaluated by monitoring the subcellular localization of a fluorescently tagged kinase of the yeast "High Osmolarity Glycerol" (HOG) pathway, Hog1-GFP. By sequential treatment of the yeast cells with a selective Hog1 kinase inhibitor and sorbitol, the subcellular localization of Hog1-GFP was analysed on a single-cell level. The results showed impaired Hog1-GFP nuclear localization, providing evidence of a congenial design. The setup made it possible to remove and add an agent within 2 seconds, which is valuable for investigating the dynamic signal transduction pathways and cannot be done using traditional methods. We are confident that the features of the four-inlet microfluidic system will be a valuable tool and hence contribute significantly to unravel the mechanisms of the HOG pathway and similar dynamic signal transduction pathways.

Place, publisher, year, edition, pages
2012. 84582K- p.
, Proceedings of SPIE - The International Society for Optical Engineering, ISSN 0277-786X ; 8458
Keyword [en]
Microfluidics, Optical manipulation, Signal transduction pathways, Single-cell analysis, Biological techniques, Cell array, Cell signaling, Cell-to-cell variation, Diffusion rate, Dynamic signals, HOG pathway, Inlet channels, Kinase inhibitors, Micro fluidic system, Nuclear localization, Osmolarity, Osmotic stress, Sequential treatments, Single-cell level, Singlecell analysis, Subcellular localizations, Yeast cell, Cells, Cytology, Fluidic devices, Glycerol, Micromanipulators, Optical tweezers, Signal transduction, Yeast, Molecular biology
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-195457DOI: 10.1117/12.929728ISBN: 978-081949175-6OAI: oai:DiVA.org:uu-195457DiVA: diva2:608083
Optical Trapping and Optical Micromanipulation IX, 12 August 2012 through 16 August 2012, San Diego, CA
Available from: 2013-02-26 Created: 2013-02-25 Last updated: 2013-02-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Dinér, Peter
By organisation
Synthetical Organic Chemistry
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 365 hits
ReferencesLink to record
Permanent link

Direct link