uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture
Show others and affiliations
2012 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 427, no 4, 3230-3243 p.Article in journal (Refereed) Published
Abstract [en]

The Martian satellite Phobos has been observed on 2007 February 24 and 25, during the pre- and post-Mars closest approach (CA) of the ESA Rosetta spacecraft Mars swing-by. The goal of the observations was the determination of the surface composition of different areas of Phobos, in order to obtain new clues regarding its nature and origin. Near-ultraviolet, visible and near-infrared (263.5-992.0 nm) images of Phobos's surface were acquired using the Narrow Angle Camera of the OSIRIS instrument onboard Rosetta. The six multi-wavelength sets of observations allowed a spectrophotometric characterization of different areas of the satellite, belonging respectively to the leading and trailing hemisphere of the anti-Mars hemisphere, and also of a section of its sub-Mars hemisphere. The pre-CA spectrophotometric data obtained with a phase angle of 19 degrees have a spectral trend consistent within the error bars with those of unresolved/disc-integrated measurements present in the literature. In addition, we detect an absorption band centred at 950 nm, which is consistent with the presence of pyroxene. The post-CA observations cover from NUV to NIR a portion of the surface (0 degrees to 43 degrees E of longitude) never studied before. The reflectance measured on our data does not fit with the previous spectrophotometry above 650 nm. This difference can be due to two reasons. First, the OSIRIS observed area in this observation phase is completely different with respect to the other local specific spectra and hence the spectrum may be different. Secondly, due to the totally different observation geometry (the phase angle ranges from 137 degrees to 140 degrees), the differences of spectral slope can be due to phase reddening. The comparison of our reflectance spectra, both pre- and post-CA, with those of D-type asteroids shows that the spectra of Phobos are all redder than the mean D-type spectrum, but within the spectral dispersion of other D-types. To complement this result, we performed an investigation of the conditions needed to collisionally capture Phobos in a way similar to that proposed for the irregular satellites of the giant planets. Once put in the context of the current understanding of the evolution of the early Solar system, the coupled observational and dynamical results we obtained strongly argue for an early capture of Phobos, likely immediately after the formation of Mars.

Place, publisher, year, edition, pages
2012. Vol. 427, no 4, 3230-3243 p.
Keyword [en]
techniques: imaging spectroscopy, planets and satellites: formation, planets and satellites: individual: Phobos, planets and satellites: surfaces
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-196095DOI: 10.1111/j.1365-2966.2012.22026.xISI: 000314421000003OAI: oai:DiVA.org:uu-196095DiVA: diva2:609224
Available from: 2013-03-04 Created: 2013-03-04 Last updated: 2013-03-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Rickman, Hans
By organisation
Theoretical Astrophysics
In the same journal
Monthly notices of the Royal Astronomical Society
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 532 hits
ReferencesLink to record
Permanent link

Direct link