uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cu out-diffusion in kesterites: A transmission electron microscopy specimen preparation artifact
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Solid State Electronics.
Show others and affiliations
2013 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 102, no 5, 051902- p.Article in journal (Refereed) Published
Abstract [en]

Solar cells based on Cu2ZnSn(S,Se)(4) absorber layers have received a growing amount of interest. Typically a Mo(S,Se)(2) layer is formed at the Cu2ZnSn(S,Se)(4)/Mo interface during processing. Transmission electron microscopy (TEM) analyses showed the presence of Cu in the Mo(S,Se)(2) which was thought to cause secondary phase formation at the back contact. However, preparing TEM samples can induce artifacts leading to false conclusions. It is therefore of great importance to identify such artifacts. In this work, we show that the Cu presence in the Mo(S, Se) 2 stems solely from TEM sample preparation and does not occur as part of the synthesis process. 

Place, publisher, year, edition, pages
2013. Vol. 102, no 5, 051902- p.
National Category
Natural Sciences Engineering and Technology
Research subject
Engineering Science with specialization in Electronics
Identifiers
URN: urn:nbn:se:uu:diva-196537DOI: 10.1063/1.4790282ISI: 000314770300025OAI: oai:DiVA.org:uu-196537DiVA: diva2:610834
Available from: 2013-03-13 Created: 2013-03-11 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Microscopic Characterisation of Solar Cells: An Electron Microscopy Study of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 Solar Cells
Open this publication in new window or tab >>Microscopic Characterisation of Solar Cells: An Electron Microscopy Study of Cu(In,Ga)Se2 and Cu2ZnSn(S,Se)4 Solar Cells
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The sun provides us with a surplus of energy convertible to electricity using solar cells. This thesis focuses on solar cells based on chalcopyrite (CIGSe) as well as kesterite (CZTS(e)) absorber layers. These materials yield record efficiencies of 20.4 % and 11.1 %, respectively. Especially for CZTS(e), the absorber layers often do not consist of one single desired phase but can exhibit areas with deviating material properties, referred to as secondary phases. Furthermore, several material layers are required for a working solar cell, each exhibiting interfaces. Even though secondary phases and interfaces represent a very small fraction of the solar cell they can have a profound influence on the over-all electrical solar cell characteristics. As such, it is crucial to understand how secondary phases and interfaces influence the local electrical characteristics.

Characterising secondary phases and interfaces is challenging due to their small sample volume and relatively small differences in composition amongst others. This is where electronmicroscopy, especially transmission electron microscopy, offers valuable insight to material properties on the microscopic scale. The main challenge is, however, to link these material properties to the corresponding electrical characteristics of a solar cell.

This thesis uses electron beam induced current imaging and introduces a new method for JV characterisation of solar cells on the micron scale. Combining microscopic structural and electrical characterisation techniques allowed identifying and characterising local defects found in the absorber layer of CIGS solar cells after thermal treatment. Furthermore, CZTSe solar cells in this thesis exhibited a low photo-current density which is traced to the formation of a current blocking ZnSe secondary phase at the front contact interface. The electron microscopy work has contributed to an understanding of the chemical stability of CZTS and has shown the need for an optimised back contact interface in order to avoid chemical decomposition reactions and formation of detrimental secondary phases. With this additional knowledge, a comprehensive picture of the material properties from the macroscopic down to the microscopic level can be attained throughout all required material layers.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. xii + 70 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1053
Keyword
TEM, SEM, FIB, solar cell, CIGS, CZTS, Alternative buffer layers, Gallium gradients, microscopic electrical characterisation, Secondary Phases
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Physical Sciences Materials Engineering
Research subject
Engineering Science with specialization in Electronics
Identifiers
urn:nbn:se:uu:diva-199432 (URN)978-91-554-8692-1 (ISBN)
Public defence
2013-09-06, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (English)
Opponent
Supervisors
Available from: 2013-06-05 Created: 2013-05-04 Last updated: 2013-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Wätjen, J. TimoScragg, Jonathan J.Edoff, MarikaRubino, StefanoPlatzer-Bjorkman, Charlotte

Search in DiVA

By author/editor
Wätjen, J. TimoScragg, Jonathan J.Edoff, MarikaRubino, StefanoPlatzer-Bjorkman, Charlotte
By organisation
Solid State Electronics
In the same journal
Applied Physics Letters
Natural SciencesEngineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 893 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf