uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Population and Conservation Biology.ORCID iD: 0000-0002-8559-5191
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics.
Show others and affiliations
2013 (English)In: Molecular Ecology, ISSN 0962-1083, E-ISSN 1365-294X, Vol. 22, no 5, 1322-1340 p.Article, review/survey (Refereed) Published
Abstract [en]

Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TR) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TR gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TR gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine-grained spatial scale.

Place, publisher, year, edition, pages
2013. Vol. 22, no 5, 1322-1340 p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-197759DOI: 10.1111/mec.12181ISI: 000315414700011OAI: oai:DiVA.org:uu-197759DiVA: diva2:614060
Available from: 2013-04-03 Created: 2013-04-03 Last updated: 2016-04-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Richter-Boix, AlexanderLaurila, Anssi
By organisation
Population and Conservation BiologyDepartment of Ecology and Genetics
In the same journal
Molecular Ecology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 188 hits
ReferencesLink to record
Permanent link

Direct link