uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Computational Study of the Chaotic Behavior in Single-molecule Conduction
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
(Department of Engineering Sciences, Division of Electricity)ORCID iD: 0000-0003-2197-5352
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2013 (English)In: 2013 MRS Spring Meeting: Electrical Contacts to Nanomaterials and Nanodevices, 2013Conference paper, Poster (Other academic)
Abstract [en]

Recently we have seen great advances in synthesis and fabrication of nanostructures. However, there is still no consensus on the conductance of small organic molecules, where different values of the conductance are often attributed to differences in metal-molecule interface structure or different molecular conformations[1,2]. Control and characterization of the metal-molecule interface during formation of the junction is in practice an impossible task. To get insight into this highly dynamic process, computer simulations are needed; here we are going to show a combination of ab-initio molecular dynamics (MD)-simulations and conductance calculations to address this problem.The conductance of a junction is mainly determined by the relative position of the energy level closest to the Fermi level of the electrodes and by the coupling of the corresponding electronic state to the electrodes[2]. These parameters are greatly influenced by the nature of the interaction and/or chemical bond between electrodes and the molecule. Information about the nature of this interaction and its variation with different binding sites can be extracted from the conduction spectra. Here we are using MD-simulations to get an unbiased set of geometries, thus mimicking the randomness of a real junction under thermal fluctuations. From the obtained geometries the zero-bias conductance is calculated and used for histograms to investigate the statistics of the junction.The obtained histograms for the thiol-bonded molecules are fitted with probability distributions for different Gaussian ensembles and we show that the interaction between the electrode and the molecule gives rise to quantum chaos in the junction. The effect of quantum chaos have earlier been found experimentally for quantum dots[3] and nanowires[4]. By removing the symmetry in the junction the chaotic behavior can be increased. We also compare the thiol anchoring groups with amines and we can see that the weaker coupling to the gold for the amines increases the conductance fluctuations in the junctions by one to two orders of magnitude. By tuning the ratio of the coupling between the electrodes and the molecular state we show, that the junction can be switched from a chaotic behavior to a case with a normal distributed conductance spectrum where only temperature fluctuations are present.[1] S. L. Bernasek, Angew. Chem. Int. Ed. 51, 9737 (2012).[2] A. Nitzan and M. A. Ratner, Science 300, 1384 (2003).[3] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, and A. K. Geim, Science 320, 356 (2008).[4] J. L. Costa-Krämer, N. García, P. García-Mochales, P. A. Serena, M. I. Marqués, and A. Correia, Phys. Rev. B 55, 5416 (1997).

Place, publisher, year, edition, pages
National Category
Other Physics Topics Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics; Engineering Science with specialization in Science of Electricity
URN: urn:nbn:se:uu:diva-198703OAI: oai:DiVA.org:uu-198703DiVA: diva2:617476
2013 MRS Spring Meeting
Available from: 2013-04-23 Created: 2013-04-23 Last updated: 2016-04-22

Open Access in DiVA

No full text

Other links


Search in DiVA

By author/editor
Löfås, HenrikGrigoriev, AntonIsberg, JanAhuja, Rajeev
By organisation
Materials Theory
Other Physics TopicsElectrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 178 hits
ReferencesLink to record
Permanent link

Direct link