uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
[(11)C]Sorafenib: Radiosynthesis and preclinical evaluation in tumor-bearing mice of a new TKI-PET tracer.:  
VU University Medical Center, Amsterdam, the Netherlands.
VU University Medical Center, Amsterdam, the Netherlands.
VU University Medical Center, Amsterdam, the Netherlands.
VU University Medical Center, Amsterdam, the Netherlands.
Show others and affiliations
2013 (English)In: Nuclear Medicine and Biology, ISSN 0969-8051, E-ISSN 1872-9614, Vol. 40, no 4, 488-497 p.Article in journal (Refereed) Published
Abstract [en]

INTRODUCTION: Tyrosine kinase inhibitors (TKIs) like sorafenib are important anticancer therapeutics with thus far limited treatment response rates in cancer patients. Positron emission tomography (PET) could provide the means for selection of patients who might benefit from TKI treatment, if suitable PET tracers would be available. The aim of this study was to radiolabel sorafenib (1) with carbon-11 and to evaluate its potential as TKI-PET tracer in vivo. METHODS: Synthetic methods were developed in which sorafenib was labeled at two different positions, followed by a metabolite analysis in rats and a PET imaging study in tumor-bearing mice. RESULTS: [methyl-(11)C]-1 and [urea-(11)C]-1 were synthesized in yields of 59% and 53%, respectively, with a purity of >99%. The identity of the products was confirmed by coinjection on HPLC with reference sorafenib. In an in vivo metabolite analysis [(11)C]sorafenib proved to be stable. The percentage of intact product in blood-plasma after 45min was 90% for [methyl-(11)C]-1 and 96% for [urea-(11)C]-1, respectively. Due to the more reliable synthesis, further research regarding PET imaging was performed with [methyl-(11)C]-1 in nude mice bearing FaDu (head and neck cancer), MDA-MB-231 (breast cancer) or RXF393 (renal cancer) xenografts. Highest tracer accumulation at a level of 2.52±0.33%ID/g was observed in RXF393, a xenograft line extensively expressing the sorafenib target antigen Raf-1 as assessed by immunohistochemistry. CONCLUSION: In conclusion, we have synthesized [(11)C]sorafenib as PET tracer, which is stable in vivo and has the capability to be used as PET tracer for imaging in tumor-bearing mice.

Place, publisher, year, edition, pages
2013. Vol. 40, no 4, 488-497 p.
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:uu:diva-198796DOI: 10.1016/j.nucmedbio.2013.02.002PubMedID: 23522977OAI: oai:DiVA.org:uu-198796DiVA: diva2:617927
Available from: 2013-04-25 Created: 2013-04-25 Last updated: 2017-12-06

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Authority records BETA

Eriksson, Jonas

Search in DiVA

By author/editor
Eriksson, Jonas
In the same journal
Nuclear Medicine and Biology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 434 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf