uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electronic, mechanical and optical properties of Y2O3 with hybrid density functional (HSE06)
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
2013 (English)In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 71, 19-24 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we have investigated the electronic, optical and mechanical properties of the Y2O3 crystal by first-principle calculations based on the density-functional theory. The generalized gradient approximation (GGA-PBE) and hybrid exchange-correlation functional (HSE06) are both used for comparative study. It is found that, the band gap of Y2O3 calculated by HSE06 method (6.0 eV) is in good agreement with the experimental band gap data (5.5 eV), and HSE06 gives better electronic structure description close to experiments. Then we calculate the elastic constants, and derive the corresponding properties i.e.; bulk, shear and Young's moduli, and Poisson's ratio. Our calculated elastic and mechanical properties correspond well with experimental data. Besides, we also obtain the equilibrium lattice and bulk modulus of yttria by fitting the Birch-Murnaghan equation of state. It is found that, the HSE06 well reproduce the experimental lattice parameters, equilibrium volume and bulk modulus of Y2O3. Based on the accurate described crystal and electronic structure and mechanical properties by HSE06 method, the optical properties of this material are also analyzed.

Place, publisher, year, edition, pages
2013. Vol. 71, 19-24 p.
Keyword [en]
Hybrid density functional, Electronic structure, Mechanical properties, Optical properties
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-198896DOI: 10.1016/j.commatsci.2012.12.026ISI: 000316661300003OAI: oai:DiVA.org:uu-198896DiVA: diva2:619283
Available from: 2013-05-02 Created: 2013-04-29 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Structural, Electronic and Mechanical Properties of Advanced Functional Materials
Open this publication in new window or tab >>Structural, Electronic and Mechanical Properties of Advanced Functional Materials
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The search for alternate and renewable energy resources as well as the efficient use of energy and development of such systems that can help to save the energy consumption is needed because of exponential growth in world population, limited conventional fossil fuel resources, and to meet the increasing demand of clean and environment friendly substitutes. Hydrogen being the simplest, most abundant and clean energy carrier has the potential to fulfill some of these requirements provided the development of efficient, safe and durable systems for its production, storage and usage.

Chemical hydrides, complex hydrides and nanomaterials, where the hydrogen is either chemically bonded to the metal ions or physiosorbed, are the possible means to overcome the difficulties associated with the storage and usage of hydrogen at favorable conditions. We have studied the structural and electronic properties of some of the chemical hydrides, complex hydrides and functionalized nanostructures to understand the kinetics and thermodynamics of these materials.

Another active field relating to energy storage is rechargeable batteries. We have studied the detailed crystal and electronic structures of Li and Mg based cathode materials and calculated the average intercalation voltage of the corresponding batteries. We found that transition metal doped MgH2 nanocluster is a material to use efficiently not only in batteries but also in fuel-cell technologies.

MAX phases can be used to develop the systems to save the energy consumption. We have chosen one compound from each of all known types of MAX phases and analyzed the structural, electronic, and mechanical properties using the hybrid functional. We suggest that the proper treatment of correlation effects is important for the correct description of Cr2AlC and Cr2GeC by the good choice of Hubbard 'U' in DFT+U method.

Hydrogen is fascinating to physicists due to predicted possibility of metallization and high temperature superconductivity. On the basis of our ab initio molecular dynamics studies, we propose that the recent claim of conductive hydrogen by experiments might be explained by the diffusion of hydrogen at relevant pressure and temperature.

In this thesis we also present the studies of phase change memory materials, oxides and amorphization of oxide materials, spintronics and sulfide materials.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 98 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1062
Keyword
DFT, Hydrogen storage, Rechargeable batteries, Amorphization, Electronic structure, Crystal strcuture, Molecular dynamics, Diffusion, Intercalation voltage, High pressure, MAX phases, Mechanical properties, Optical properties, Phase change memory, Spintronics, Magnetism, Correlation effects, Band structure
National Category
Physical Sciences
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-205243 (URN)978-91-554-8723-2 (ISBN)
Public defence
2013-09-27, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2013-09-06 Created: 2013-08-15 Last updated: 2014-01-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ramzan, MuhammadChimata, RaghuveerAhuja, Rajeev

Search in DiVA

By author/editor
Ramzan, MuhammadChimata, RaghuveerAhuja, Rajeev
By organisation
Materials Theory
In the same journal
Computational materials science
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 526 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf