uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magmatic origin of giant 'Kiruna-type' apatite-iron-oxide ores in Central Sweden
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Uppsala University, Disciplinary Domain of Science and Technology, Earth Sciences, Department of Earth Sciences, Solid Earth Geology.
Show others and affiliations
2013 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 3, 1644- p.Article in journal (Refereed) Published
Abstract [en]

Iron is the most important metal for modern industry and Sweden is by far the largest iron-producer in Europe, yet the genesis of Sweden's main iron-source, the 'Kiruna-type' apatite-iron-oxide ores, remains enigmatic. We show that magnetites from the largest central Swedish 'Kiruna-type' deposit at Grangesberg have delta O-18 values between -0.4 and +3.7%, while the 1.90-1.88 Ga meta-volcanic host rocks have d18O values between +4.9 and +9%. Over 90% of the magnetite data are consistent with direct precipitation from intermediate to felsic magmas or magmatic fluids at high-temperature (delta O-18(mgt). > +0.9 parts per thousand, i.e. ortho-magmatic). A smaller group of magnetites (delta O-18(mgt) <= +0.9 parts per thousand), in turn, equilibrated with high-delta O-18, likely meteoric, hydrothermal fluids at low temperatures. The central Swedish 'Kiruna-type' ores thus formed dominantly through magmatic iron-oxide precipitation within a larger volcanic superstructure, while local hydrothermal activity resulted from low-temperature fluid circulation in the shallower parts of this system.

Place, publisher, year, edition, pages
2013. Vol. 3, 1644- p.
National Category
Geology
Research subject
Earth Science with specialization in Mineral Chemistry, Petrology and Tectonics
Identifiers
URN: urn:nbn:se:uu:diva-199703DOI: 10.1038/srep01644ISI: 000317332400009OAI: oai:DiVA.org:uu-199703DiVA: diva2:621273
Available from: 2013-05-14 Created: 2013-05-13 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Jonsson, ErikTroll, Valentin R.Högdahl, KarinWeis, Franz

Search in DiVA

By author/editor
Jonsson, ErikTroll, Valentin R.Högdahl, KarinWeis, Franz
By organisation
Solid Earth Geology
In the same journal
Scientific Reports
Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 417 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf