uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Model-Based Approach to Predict Longitudinal HbA1c, Using Early Phase Glucose Data From Type 2 Diabetes Mellitus Patients After Anti-Diabetic Treatment
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.ORCID iD: 0000-0003-3531-9452
Show others and affiliations
2013 (English)In: Journal of clinical pharmacology, ISSN 0091-2700, E-ISSN 1552-4604, Vol. 53, no 6, 589-600 p.Article in journal (Refereed) Published
Abstract [en]

Predicting late phase outcomes from early-phase findings can help inform decisions in drug development. If the measurements in early-phase differ from those in late phase, forecasting is more challenging. In this paper, we present a model-based approach for predicting glycosylated hemoglobin (HbA1c) in late phase using glucose and insulin concentrations from an early-phase study, investigating an anti-diabetic treatment. Two previously published models were used; an integrated glucose and insulin (IGI) model for meal tolerance tests and an integrated glucose-red blood cell-HbA1c (IGRH) model predicting the formation of HbA1c from the average glucose concentration (Cg,av). Output from the IGI model was used as input to the IGRH model. Parameters of the IGI model and drug effects were estimated using data from a phase1 study in 59 diabetic patients receiving various doses of a glucokinase activator. Cg,av values were simulated according to a Phase 2 study design and used in the IGRH model for predictions of HbA1c. The performance of the model-based approach was assessed by comparing the predicted to the actual outcome of the Phase 2 study. We have shown that this approach well predicts the longitudinal HbA1c response in a 12-week study using only information from a 1-week study where glucose and insulin concentrations were measured.

Place, publisher, year, edition, pages
2013. Vol. 53, no 6, 589-600 p.
Keyword [en]
semi-mechanistic models, glucose, insulin, HbA1c, IGI model, IGRH model, NONMEM
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-202909DOI: 10.1002/jcph.86ISI: 000319067200002OAI: oai:DiVA.org:uu-202909DiVA: diva2:634586
Available from: 2013-07-01 Created: 2013-07-01 Last updated: 2017-12-06

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Kjellsson, Maria C.Karlsson, Mats O.

Search in DiVA

By author/editor
Kjellsson, Maria C.Karlsson, Mats O.
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Journal of clinical pharmacology
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 423 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf