uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Asparagine-linked glycans determine the cytotoxic capacity of eosinophil cationic protein (ECP)
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Medical Sciences, Biochemial structure and function.
2013 (English)In: Molecular Immunology, ISSN 0161-5890, E-ISSN 1872-9142, Vol. 55, no 3-4, 372-380 p.Article in journal (Refereed) Published
Abstract [en]

Eosinophil cationic protein (ECP) is a toxic, granule-stored protein of the eosinophil granulocyte. It is a heterogeneous protein; molecular weights can differ from 15 to 22 kDa, due to glycosylations. We purified high molecular weight ECP from blood donors with the ECP434GG (rs2073342) genotype, with the aim of examining whether removal of carbohydrates could enhance the cytotoxic capacity. The cytotoxic activity of the ECP pools was tested against the NCI-H69 cell line, before and after enzymatic deglycosylation. ECP was also analysed by SELDI-TOF MS to monitor the changes in molecular mass after deglycosylation. Five high molecular weight pools of ECP (HMW-ECP I-V) with decreasing degrees of glycosylation were tested at concentrations ranging from 0.02 to 0.6 mu M. The activity ranged from EC50 of >0.6 mu M to 0.04 mu M; HMW-ECP II had the lowest activity and HMW-ECP V the highest. After deglycosylation with N-glycosidase F, pools HMW-ECP I-III were reduced to the same molecular weight of 15.78 kDa and acquired potent cytotoxic activities. HMW-ECP IV and V with molecular species at 163 and 16.1 kDa were highly cytotoxic as such and were only partially deglycosylated, with slight enhancement of the toxic properties. The results suggest the presence of several HMW-ECP molecular species with differences in their post-translational modifications and cytotoxic properties. We conclude that a fraction of native ECP is stored in a non-cytotoxic form, which can be converted into a cytotoxic form by N-deglycosylation, whereas another fraction is stored as a highly cytotoxic form carrying different post-translational modifications.

Place, publisher, year, edition, pages
2013. Vol. 55, no 3-4, 372-380 p.
Keyword [en]
Eosinophil granulocyte, Granule protein, SELDI-TOF MS, Glycosylation, Cytotoxicity
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-202885DOI: 10.1016/j.molimm.2013.03.016ISI: 000319540200022OAI: oai:DiVA.org:uu-202885DiVA: diva2:634689
Available from: 2013-07-01 Created: 2013-07-01 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Rubin, JennyVenge, Per

Search in DiVA

By author/editor
Rubin, JennyVenge, Per
By organisation
Biochemial structure and function
In the same journal
Molecular Immunology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 365 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf