uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
MHD modeling of the double-gradient (kink) magnetic instability
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Swedish Institute of Space Physics, Uppsala Division.
Show others and affiliations
2013 (English)In: Journal of Geophysical Research, ISSN 0148-0227, E-ISSN 2156-2202, Vol. 118, no 3, 1146-1158 p.Article in journal (Refereed) Published
Abstract [en]

The paper presents the detailed numerical investigation of the "double-gradient mode," which is believed to be responsible for the magnetotail flapping oscillations-the fast vertical (normal to the layer) oscillations of the Earth's magnetotail plasma sheet with a quasiperiod similar to 100-200 s. The instability is studied using the magnetotail near-equilibrium configuration. For the first time, linear three-dimensional numerical analysis is complemented with full 3-D MHD simulations. It is known that the "double-gradient mode" has unstable solutions in the region of the tailward growth of the magnetic field component, normal to the current sheet. The unstable kink branch of the mode is the focus of our study. Linear MHD code results agree with the theory, and the growth rate is found to be close to the peak value, provided by the analytical estimates. Full 3-D simulations are initialized with the numerically relaxed magnetotail equilibrium, similar to the linear code initial condition. The calculations show that current layer with tailward gradient of the normal component of the magnetic field is unstable to wavelengths longer than the curvature radius of the field line. The segment of the current sheet with the earthward gradient of the normal component makes some stabilizing effect (the same effect is registered in the linearized MHD simulations) due to the minimum of the total pressure localized in the center of the sheet. The overall growth rate is close to the theoretical double-gradient estimate averaged over the computational domain.

Place, publisher, year, edition, pages
2013. Vol. 118, no 3, 1146-1158 p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-202460DOI: 10.1002/jgra.50206ISI: 000318274000017OAI: oai:DiVA.org:uu-202460DiVA: diva2:634854
Available from: 2013-07-01 Created: 2013-06-24 Last updated: 2013-07-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Divin, Andrey
By organisation
Swedish Institute of Space Physics, Uppsala Division
In the same journal
Journal of Geophysical Research
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 169 hits
ReferencesLink to record
Permanent link

Direct link