uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Schematic design and safeguards instrumentation of a Gen IV fuel recycling facility.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
2013 (English)Conference paper, Published paper (Other academic)
Abstract [en]

The sustainability criterion for Gen IV systems, inherently presumes the availability of efficient fuel recycling capabilities. Research activities concerning advanced fuel recycling are currently pursued, and one area for such research concerns safeguards aspects of recycling facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design.

Presented in this paper is a suggested safeguards approach for a fuel recycling facility belonging to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of a small-scale recycling facility, where actinides are separated using group actinide solvent extraction, is put forward. Measurement points are suggested based on available information on the recycling process activities and calculated material flows.

Based on the identified need for measurements in the facility, possible techniques and instrumentation for measurements have been identified with the purpose to provide both inspecting parties and facility operators with necessary information for their respective needs. More generally, this type of analysis may be used to support Safeguards By Design in the planning of new recycling facilities.

Place, publisher, year, edition, pages
2013.
Keyword [en]
Gen IV, recycling, group actinide extraction, instrumentation, Safeguards By Design
National Category
Other Physics Topics
Research subject
Applied Nuclear Physics
Identifiers
URN: urn:nbn:se:uu:diva-204141OAI: oai:DiVA.org:uu-204141DiVA: diva2:637732
Conference
The 35th ESARDA Annual Meeting
Available from: 2013-07-22 Created: 2013-07-22 Last updated: 2014-01-21
In thesis
1. Proliferation resistances of Generation IV recycling facilities for nuclear fuel
Open this publication in new window or tab >>Proliferation resistances of Generation IV recycling facilities for nuclear fuel
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The effects of global warming raise demands for reduced CO2 emissions, whereas at the same time the world’s need for energy increases. With the aim to resolve some of the difficulties facing today’s nuclear power, striving for safety, sustainability and waste minimization, a new generation of nuclear energy systems is being pursued: Generation IV.

New reactor concepts and new nuclear facilities should be at least as resistant to diversion of nuclear material for weapons production, as were the previous ones. However, the emerging generation of nuclear power will give rise to new challenges to the international safeguards community, due to new and increased flows of nuclear material in the nuclear fuel cycle. Before a wide implementation of Generation IV nuclear power facilities takes place, there lies still an opportunity to formulate safeguards requirements for the next generation of nuclear energy systems. In this context, this thesis constitutes one contribution to the global efforts to make future nuclear energy systems increasingly resistant to nuclear material diversion attempts.

This thesis comprises three papers, all of which concern safeguards and proliferation resistance in Generation IV nuclear energy systems and especially recycling facilities:

In Paper I, proliferation resistances of three fuel cycles, comprising different reprocessing techniques, are investigated. The results highlight the importance of making group actinide extraction techniques commercial, due to the inherently less vulnerable isotopic and radiological properties of the materials in such processes.

Paper II covers the schematic design and safeguards instrumentation of a Generation IV recycling facility. The identification of the safeguards needs of planned facilities can act as a guide towards the development of new instrumentation suitable for Generation IV nuclear energy systems.

Finally, Paper III describes a mode of procedure for assessing proliferation resistance of a recycling facility for fast reactor fuel. The assessments may be used, as in this case, as an aid to maintain or increase the inherent proliferation resistance when performing facility design changes and upgrades.

Place, publisher, year, edition, pages
Uppsala: Uppsala universitet, 2013. 23 p.
Keyword
safeguards, proliferation resistance, Generation IV, reprocessing
National Category
Other Physics Topics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-209098 (URN)
Presentation
(English)
Opponent
Supervisors
Funder
Swedish Research Council
Available from: 2014-01-21 Created: 2013-10-14 Last updated: 2014-01-21Bibliographically approved

Open Access in DiVA

No full text

By organisation
Applied Nuclear Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1063 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf