uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
tRNASer and tRNAThr induce -1 frameshifting using alternative anticodon-loop structures
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology.
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry and Molecular Biology
Research subject
Biology
Identifiers
URN: urn:nbn:se:uu:diva-205130OAI: oai:DiVA.org:uu-205130DiVA: diva2:640740
Available from: 2013-08-14 Created: 2013-08-14 Last updated: 2014-01-22
In thesis
1. Structural and Biochemical Studies of Antibiotic Resistance and Ribosomal Frameshifting
Open this publication in new window or tab >>Structural and Biochemical Studies of Antibiotic Resistance and Ribosomal Frameshifting
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Protein synthesis, translation, performed by the ribosome, is a fundamental process of life and one of the main targets of antibacterial drugs. This thesis provides structural and biochemical understanding of three aspects of bacterial translation.

Elongation factor G (EF-G) is the target for the antibiotic fusidic acid (FA). FA binds to EF-G only on the ribosome after GTP hydrolysis and prevents EF-G dissociation from the ribosome. Point mutations in EF-G can lead to FA resistance but are often accompanied by a fitness cost in terms of slower growth of the bacteria. Secondary mutations can compensate for this fitness cost while resistance is maintained. Here we present the crystal structure of the clinical FA drug target, Staphylococcus aureus EF-G, together with the mapping and analysis of all known FA-resistance mutations in EF-G. We also present crystal structures of the FA-resistant mutant F88L, the FA-hypersensitive mutant M16I and the FA-resistant but fitness-compensated double mutant F88L/M16I. Analysis of mutant structures together with biochemical data allowed us to propose that fitness loss and compensation are caused by effects on the conformational dynamics of EF-G on the ribosome.

Aminoglycosides are another group of antibiotics that target the decoding region of the 30S ribosomal subunit. Resistance to aminoglycosides can be acquired by inactivation of the drugs via enzymatic modification. Here, we present the first crystal structure an aminoglycoside 3’’ adenyltransferase, AadA from Salmonella enterica. AadA displays two domains and unlike related structures most likely functions as a monomer.

Frameshifts are deviations the standard three-base reading frame of translation. -1 frameshifting can be caused by normal tRNASer3 at GCA alanine codons and tRNAThr3 at CCA/CCG proline codons. This process has been proposed to involve doublet decoding using non-standard codon-anticodon interactions. In our study, we showed by equilibrium binding that these tRNAs bind with low micromolar Kd to the frameshift codons. Our results support the doublet-decoding model and show that non-standard anticodon loop structures need to be adopted for the frameshifts to happen.

These findings provide new insights in antibiotic resistance and reading-frame maintenance and will contribute to a better understanding of the translation elongation process. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 66 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1064
Keyword
protein synthesis, elongation, elongation factor G, fusidic acid, antibiotic resistance, aminoglycoside adenyltransferase, ribosomal frameshifting
National Category
Structural Biology
Research subject
Biology with specialization in Structural Biology
Identifiers
urn:nbn:se:uu:diva-205131 (URN)978-91-554-8728-7 (ISBN)
Public defence
2013-10-04, B42, Biomedical Center, Husargatan 3, Uppsala, 13:00 (English)
Opponent
Supervisors
Available from: 2013-09-12 Created: 2013-08-14 Last updated: 2014-01-22

Open Access in DiVA

No full text

By organisation
Department of Cell and Molecular Biology
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 394 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf