uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Radial Structure of Free Yb/YbO Nanoparticles Created by Oxidation Before or After Aggregation with Divalent Instead of Trivalent Oxide
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Molecular and condensed matter physics.
Show others and affiliations
2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 27, 14390-14397 p.Article in journal (Refereed) Published
Abstract [en]

Nanoparticles consisting of Yb and its divalent oxide YbO have been created by two different oxidation approaches based on the gas-aggregation method with magnetron sputtering. In one type of nanoparticles, the Yb oxide molecules, created by reactive sputtering before the aggregation, agglomerate predominantly in the interior of mixed-composition nanoparticles. In the other type, the oxide is formed by exposing the preformed metallic Yb nanoparticles to oxygen, which at certain conditions is believed to oxidize primarily the surface of such nanoparticles. Such segregated stoichiometry has been disclosed using Yb 4f core-level photoelectron spectroscopy at a series of oxidation conditions for each type of production. In contrast to a typical macroscopic case where Yb is trivalent, in both production cases, Yb is divalent in the oxide. By using the production methods suggested, it becomes possible to tailor the electronic and thus the physical and chemical properties of such nanoparticles, which are discussed in the literature as building blocks for photonic, electronic, and magnetic nanoscale devices.

Place, publisher, year, edition, pages
2013. Vol. 117, no 27, 14390-14397 p.
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:uu:diva-205567DOI: 10.1021/jp4037556ISI: 000321883600074OAI: oai:DiVA.org:uu-205567DiVA: diva2:642334
Available from: 2013-08-21 Created: 2013-08-20 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Multicomponent Clusters/Nanoparticles: An Investigation of Electronic and Geometric Properties by Photoelectron Spectroscopy
Open this publication in new window or tab >>Multicomponent Clusters/Nanoparticles: An Investigation of Electronic and Geometric Properties by Photoelectron Spectroscopy
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Clusters/nanoparticles are aggregates of a “small” number of building blocks, atoms or molecules, ranging from two up to millions of atoms. Two main groups of clusters have been studied using photoelectron spectroscopy based on synchrotron radiation. They are dry/wet alkali-halide clusters, including pure water clusters, and metal-based nanoparticles.

For the dry alkali halide clusters, analysis of the data and theoretical modeling has allowed us insights into the local electronic properties at nanoscale: a change of polarizability of ions in the alkali-halide clusters due to the varying environment has been suggested. The study of the wet salt clusters shows that the alkali-halides are already solvated at the nanoscale reached by water clusters doped with salt vapor.

The photoelectron angular distribution of water cluster shows lower anisotropy parameters as compared to the separate monomers. A model based on intracluster scattering has been built to partly explain the reduction.

In the last part of the thesis, metal-based multi-component nanoparticles have been produced by self-assembly processes using reactive magnetron sputtering. Depending on the specific metal element, oxidation processes have been applied before or after the aggregation. Clearly radial distributions such as core-shell and “sandwich-like” structures have unambiguously determined by photoelectron spectroscopy.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 92 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1065
Keyword
Clusters, Nanoparticles, Alloy, Atmospheric chemistry, Alkali halide, Transition metals, X-ray Photoelectron spectroscopy, Polarizability, Core-shell, Sandwich structure, MAX-lab, BESSY II
National Category
Condensed Matter Physics Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:uu:diva-205651 (URN)978-91-554-8730-0 (ISBN)
Public defence
2013-10-03, Room 80101, Lägerhyddsvägen 1, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2013-09-12 Created: 2013-08-21 Last updated: 2014-01-22

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Zhang, ChaofanAndersson, TomasBjörneholm, Olle

Search in DiVA

By author/editor
Zhang, ChaofanAndersson, TomasBjörneholm, Olle
By organisation
Molecular and condensed matter physics
In the same journal
The Journal of Physical Chemistry C
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 647 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf