uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Proliferation resistance assessments during the design phase of a fuel recycling facility as a means of reducing proliferation risks
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.ORCID iD: 0000-0002-5133-6829
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Applied Nuclear Physics.
2013 (English)Conference paper, Published paper (Refereed)
Abstract [en]

The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design.

Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS and PR&PP. The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined.

The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can been carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified.

This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities.

Place, publisher, year, edition, pages
2013.
Keyword [en]
Proliferation resistance, safeguards by design, reprocessing, Generation IV
National Category
Other Physics Topics
Research subject
Physics
Identifiers
URN: urn:nbn:se:uu:diva-205866OAI: oai:DiVA.org:uu-205866DiVA, id: diva2:642904
Conference
GLOBAL 2013: International Nuclear Fuel Cycle Conference
Available from: 2013-08-23 Created: 2013-08-23 Last updated: 2018-04-19Bibliographically approved
In thesis
1. Proliferation resistances of Generation IV recycling facilities for nuclear fuel
Open this publication in new window or tab >>Proliferation resistances of Generation IV recycling facilities for nuclear fuel
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The effects of global warming raise demands for reduced CO2 emissions, whereas at the same time the world’s need for energy increases. With the aim to resolve some of the difficulties facing today’s nuclear power, striving for safety, sustainability and waste minimization, a new generation of nuclear energy systems is being pursued: Generation IV.

New reactor concepts and new nuclear facilities should be at least as resistant to diversion of nuclear material for weapons production, as were the previous ones. However, the emerging generation of nuclear power will give rise to new challenges to the international safeguards community, due to new and increased flows of nuclear material in the nuclear fuel cycle. Before a wide implementation of Generation IV nuclear power facilities takes place, there lies still an opportunity to formulate safeguards requirements for the next generation of nuclear energy systems. In this context, this thesis constitutes one contribution to the global efforts to make future nuclear energy systems increasingly resistant to nuclear material diversion attempts.

This thesis comprises three papers, all of which concern safeguards and proliferation resistance in Generation IV nuclear energy systems and especially recycling facilities:

In Paper I, proliferation resistances of three fuel cycles, comprising different reprocessing techniques, are investigated. The results highlight the importance of making group actinide extraction techniques commercial, due to the inherently less vulnerable isotopic and radiological properties of the materials in such processes.

Paper II covers the schematic design and safeguards instrumentation of a Generation IV recycling facility. The identification of the safeguards needs of planned facilities can act as a guide towards the development of new instrumentation suitable for Generation IV nuclear energy systems.

Finally, Paper III describes a mode of procedure for assessing proliferation resistance of a recycling facility for fast reactor fuel. The assessments may be used, as in this case, as an aid to maintain or increase the inherent proliferation resistance when performing facility design changes and upgrades.

Place, publisher, year, edition, pages
Uppsala: Uppsala universitet, 2013. p. 23
Keyword
safeguards, proliferation resistance, Generation IV, reprocessing
National Category
Other Physics Topics
Research subject
Physics with specialization in Applied Nuclear Physics
Identifiers
urn:nbn:se:uu:diva-209098 (URN)
Presentation
(English)
Opponent
Supervisors
Funder
Swedish Research Council
Available from: 2014-01-21 Created: 2013-10-14 Last updated: 2014-01-21Bibliographically approved
2. Nuclear safeguards evaluation and analysis techniques for application to nuclear fuel material in Generation IV nuclear energy systems
Open this publication in new window or tab >>Nuclear safeguards evaluation and analysis techniques for application to nuclear fuel material in Generation IV nuclear energy systems
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

A new generation of nuclear energy systems called Generation IV is under development to ensure that nuclear power will be a safe, reliable and sustainable energy source for the future. This thesis addresses the challenge of making future nuclear energy systems increasingly resistant to nuclear material diversion attempts.

Several tools have been developed for structured evaluation of a system's resistance to nuclear proliferation, in order to identify areas where nuclear energy systems are the most inherently vulnerable. In this thesis, the TOPS methodology has been applied to three different fuel cycles involving a fast reactor with fuel recycling and fuel fabrication capabilities. The recycling facility, where the fuel is dissolved and undergoes chemical separation, is identified as being particularly vulnerable. Nondestructive measurements for verification of fuel assemblies in the receipt area of the recycling facility are essential, since it is the last opportunity to verify intact fuel items. Moreover, iterative evaluation of proliferation resistance by using two different assessment methodologies – TOPS and PR&PP – as suggested in this thesis, may act as an aid in facility design and for proposing safeguards implementation.

Based on the identified need to measure irradiated fuel assemblies prior to dissolution in the recycling facility, new methods used for analyzing gamma-ray spectroscopy data using multivariate analysis methods have been investigated. Fuel parameters of modeled nuclear fuel have been determined without any reliance on operator-declared data. Nonlinear classifiers, e.g. support vector machines (SVM), have successfully been used for discrimination between uranium oxide fuels and mixed oxide fuels. Cooling time, burnup and initial fissile content have been determined using decision tree and SVM regression. The results are promising and indicate that the nuclear safeguards regime may benefit from using multivariate techniques for data analysis. It must be emphasized, however, that experimental verification of the multivariate analysis techniques is necessary.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 72
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1617
National Category
Physical Sciences
Research subject
Physics
Identifiers
urn:nbn:se:uu:diva-337699 (URN)978-91-513-0202-7 (ISBN)
Public defence
2018-02-23, Å4001, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2018-01-31 Created: 2018-01-09 Last updated: 2018-03-08

Open Access in DiVA

No full text in DiVA

Authority records BETA

Åberg Lindell, MatildaGrape, SophieJacobsson Svärd, Staffan

Search in DiVA

By author/editor
Åberg Lindell, MatildaGrape, SophieJacobsson Svärd, Staffan
By organisation
Applied Nuclear Physics
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1043 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf