uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Measurements of electric fields in a plasma by Stark mixing induced Lyman-α radiation
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy. Aix-Marseille Université. (Equipe Turbulence Plasma, Laboratoire PIIM)
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This paper treats a non-intrusive method of measuring electric fields in plasmas and other sensitive or hostile environments. The method is based on the use of an atomic hydrogen beam prepared in the metastable fine structure quantum state 2s1/2. Interaction with the field that is to be measured causes Stark mixing with the closely lying 2p1/2, whose spontaneous decay rate is much higher than that of 2s1/2. As a result, the total transition rate to the ground state and consequently the intensity of the Lyman-α line (121.6nm) is increased. Observations of emitted radiation from a region in which the interaction takes place are used to draw conclusions about the electric field, effectively providing a way to measure it.

In the first section, the theory behind the method is described, using time dependent perturbation theory and taking into account both Lamb shift and hyperfine structure. A description of the set-up that we have used to test the theoretical predictions follows and practical aspects related to the operation of the experiment are briefly addressed.

Measurements of the dependence of the Lyman-α intensity on both electric field frequency and amplitude are presented and shown to be in agreement with theory. These measurements have been performed in vacuum and in an argon plasma, both for static and RF fields. Two mechanisms, labeled oscillatory and geometrical saturation, that decrease the emitted intensity for strong fields are identified and described, and both are of importance for the future implementation of the studied diagnostic in a fusion device or other plasma experiment. Studies of the field profiles between a pair of electrically polarized plates have been carried out and algorithms for relating measured data to actual values of electric field strength have been developed. For static fields in vacuum, collected data is compensated for geometrical saturation and the resulting profiles are compared to those calculated with a finite element method. Good correspondence is seen in many cases, and where it is not, the discrepancies are explained. Static profile measurements in a plasma show the formation of a sheath whose thickness has been studied while varying discharge current, pressure and plasma frequency. The qualitative dependence of the sheath thickness on these parameters is in accordance with well established theory. When it comes to RF fields, a possible standing wave pattern is detected in the plasma despite problems with low signal to noise ratio.

In order to optimize the working conditions of the set-up, effects of charge accumulation due to ions present in the hydrogen beam have been studied as well as errors due to residual particle fluxes during the off-phase when pulsing the beam.

A conceptual design suggestion for implementing the method in the edge plasma of a tokamak or another similar device, based on the collected information, is also given.

Place, publisher, year, edition, pages
2013. , 53 p.
Keyword [en]
Plasma diagnostic, electric field measurement, non-intrusive, Stark effect, Lyman-alpha, hyperfine structure, H(2s), cesium vapour
National Category
Fusion, Plasma and Space Physics
URN: urn:nbn:se:uu:diva-206123OAI: oai:DiVA.org:uu-206123DiVA: diva2:643611
Educational program
Master Programme in Physics
2013-07-08, Laboratoire PIIM, Centre universitaire St Jérôme, case 321, 13397 Marseille cedex 13, Marseille, 12:15 (English)
Available from: 2013-09-12 Created: 2013-08-27 Last updated: 2013-09-12Bibliographically approved

Open Access in DiVA

Complete paper(12332 kB)208 downloads
File information
File name FULLTEXT01.pdfFile size 12332 kBChecksum SHA-512
Type fulltextMimetype application/pdf
Popular scientific summary(33 kB)31 downloads
File information
File name ATTACHMENT01.pdfFile size 33 kBChecksum SHA-512
Type attachmentMimetype application/pdf

Search in DiVA

By author/editor
Ström, Petter
By organisation
Department of Physics and Astronomy
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 208 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 365 hits
ReferencesLink to record
Permanent link

Direct link