uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Aromaticity Effects on the Profiles of the Lowest Triplet-State Potential-Energy Surfaces for Rotation about the CC Bonds of Olefins with Five-Membered Ring Substituents: An Example of the Impact of Baird's Rule
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - BMC.
Show others and affiliations
2013 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 19, no 32, 10698-10707 p.Article in journal (Refereed) Published
Abstract [en]

A density functional theory study on olefins with five-membered monocyclic 4n and 4n+2 -electron substituents (C4H3X; X=CH+, SiH+, BH, AlH, CH2, SiH2, O, S, NH, and CH-) was performed to assess the connection between the degree of substituent (anti)aromaticity and the profile of the lowest triplet-state ( (1)) potential-energy surface (PES) for twisting about olefinic CC bonds. It exploited both Huckel's rule on aromaticity in the closed-shell singlet ground state (S-0) and Baird's rule on aromaticity in the lowest * excited triplet state. 2CH(C4H3X) were categorized as set A and set B olefins depending on which carbon atom (C2 or C3) of the C4H3X ring is bonded to the olefin. (0)-antiaromatic/ (1)-aromatic (C5H4+) to strongly S-0-aromatic/ (1)- antiaromatic (C5H4-). Our hypothesis is that the shapes of the (1) PESs, as given by the energy differences between planar and perpendicularly twisted olefin structures in (1) [E( (1))], smoothly follow the changes in substituent (anti)aromaticity. Indeed, correlations between E( (1)) and the (anti)aromaticity changes of the C4H3X groups, as measured by the zz-tensor component of the nucleus-independent chemical shift NICS( (1);1)(zz), are found both for sets A and B separately (linear fits; r(2)=0.949 and 0.851, respectively) and for the two sets combined (linear fit; r(2)=0.851). For sets A and B combined, strong correlations are also found between E( (1)) and the degree of S-0 (anti)aromaticity as determined by NICS(S-0,1)(zz) (sigmoidal fit; r(2)=0.963), as well as between the (1) energies of the planar olefins and NICS(S-0,1)(zz) (linear fit; r(2)=0.939). (1) PESs suitable for adiabatic Z/E photoisomerization.

Place, publisher, year, edition, pages
2013. Vol. 19, no 32, 10698-10707 p.
Keyword [en]
alkenes, aromaticity, density functional calculations, electronic structure, photochemistry
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-206558DOI: 10.1002/chem.201300008ISI: 000322238800038OAI: oai:DiVA.org:uu-206558DiVA: diva2:644936
Available from: 2013-09-02 Created: 2013-09-02 Last updated: 2017-12-06Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Ottosson, Henrik

Search in DiVA

By author/editor
Ottosson, Henrik
By organisation
Department of Chemistry - BMCPhysical Organic Chemistry
In the same journal
Chemistry - A European Journal
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 792 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf