uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Insights on the Solubility of CO2 in 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide from the Microscopic Point of View
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Cell and Molecular Biology, Computational and Systems Biology.
Show others and affiliations
2013 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 47, no 13, 7421-7429 p.Article in journal (Refereed) Published
Abstract [en]

Emissions of greenhouse gases due to human activities have been well documented as well as the effects on global warming resulting from it. Efforts to reduce greenhouse gases at the source are crucial to curb climate change, but due to insignificant economic incentives to reduce usage of fossil fuels, not a lot of progress has been made by this route. This necessitates additional measures to reduce the occurrence of greenhouse gases in the atmosphere. Here we used theoretical methods to study the solubility of carbon dioxide in ionic liquids (ILs) since sequestration of CO2 in ILs has been proposed as a possible technology for reducing the emissions of CO2 to the atmosphere. Ionic liquids form a class of solvents with melting temperatures below 100 degrees C and, due to very low vapor pressures, which are not volatile. We have performed molecular dynamics (MD) simulations of 1-ethyl-3-methylimidazolium (C(2)mim) bis(trifluoromethylsulfonyl)imide (Tf2N) and its mixtures with carbon dioxide in order to investigate the CO2 concentration effect on the CO2-cation and CO2-anion interactions. A systematic investigation of CO2 concentration effects on resulting equilibrium liquid structure, and the local environment of the ions is provided The Quantum Theory of Atoms in Molecules (QTAIM) was used to determine the interaction energy for CO2-cation and CO2-anion complexes from uncorrelated structures derived from MD simulations. A spatial distribution function analysis demonstrates the specific interactions between CO2 and the ionic liquid. Our findings indicate that the total volume of the system increases with the CO2 concentration, with a molar volume of CO2 of about 0.038 L/mol, corresponding to liquid CO2 under a pressure of 100 bar. In other words, the IL effectively pressurizes the CO2 inside its matrix. The thermodynamics of CO2 solvation in C2 min-Tf2N were computed using free energy techniques, and the solubility of CO2 is found to be higher in this IL (-3.7 +/- 1 kcal/mol) than in water (+0.2 kJ/mol), predominantly due to anion-CO2 interactions.

Place, publisher, year, edition, pages
2013. Vol. 47, no 13, 7421-7429 p.
National Category
Natural Sciences
URN: urn:nbn:se:uu:diva-206653DOI: 10.1021/es4020986ISI: 000321521400085OAI: oai:DiVA.org:uu-206653DiVA: diva2:645173
Available from: 2013-09-03 Created: 2013-09-02 Last updated: 2013-09-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
van der Spoel, David
By organisation
Computational and Systems Biology
In the same journal
Environmental Science and Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 163 hits
ReferencesLink to record
Permanent link

Direct link