uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On a Two Pole Motor for Electric Propulsion System
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Show others and affiliations
2013 (English)In: International Journal of Engineering Science and Innovative Technology, ISSN 2319 - 5967, Vol. 2, no 1, 99-111 p.Article in journal (Refereed) Published
Place, publisher, year, edition, pages
2013. Vol. 2, no 1, 99-111 p.
National Category
Energy Systems
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
URN: urn:nbn:se:uu:diva-207170OAI: oai:DiVA.org:uu-207170DiVA: diva2:646985
Available from: 2013-09-10 Created: 2013-09-10 Last updated: 2016-10-06Bibliographically approved
In thesis
1. Full Scale Applications of Permanent Magnet Electromagnetic Energy Converters: From Nd2Fe14B to Ferrite
Open this publication in new window or tab >>Full Scale Applications of Permanent Magnet Electromagnetic Energy Converters: From Nd2Fe14B to Ferrite
2013 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents research regarding a full scale linear ferrite permanent magnet generator, installed in a wave energy conversion system. The ferrite based magnetic circuit, supplementing the previous utilized Nd2Fe14B-magnet design, is designed with an electromagnetic numerical simulation tool, where the model is derived from Maxwell’s equations. The full scale design is, known to the author, the first developed linear ferrite based machine. The material change in the magnetic circuit required different mechanical solutions of the generator. The fundamental, primary theory and reasoning behind the new mechanical design is here presented, where sustainability, economy and production have been in focus and affected the final design. Two versions of the generator have been assembled and deployed at the projects experimental site on the Swedish west coast, and three more are under construction, planned to be installed during the autumn of 2013.  

Further, the thesis presents an electric conversion circuit based on the electric resonance phenomena. Full scale experimental results present a successfully achieved electric resonance between the linear wave energy generator and external circuit.

Finally, research regarding a two pole permanent magnet motor for an electrical vehicle is presented. Detailed analytical and numerical calculations are utilized to investigate the losses in the machine over a wide frequency interval. The results indicate the possibility of an increased efficiency of electrical motors in electrical vehicle system and argue for elimination of the gearbox. The system total efficiency and mechanical stability can thereby be increased.   

The work concerning the wave energy converter is a part of a larger project, the Lysekil Wave Power Project, developed by a research group at Uppsala University, whereas the work concerning the electric motor so far has been carried out as an individual project. However, a future goal is to integrate the research on the electric motor for electric vehicles with ongoing research regarding a flywheel based electric driveline for an All Electric Propulsion System.      

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2013. 75 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1074
National Category
Water Engineering
Identifiers
urn:nbn:se:uu:diva-207280 (URN)978-91-554-8752-2 (ISBN)
Public defence
2013-10-25, Polhemsalen, Ångströmslaboratoriet, Regementsvägen 1, Uppsala, 15:55 (English)
Opponent
Supervisors
Available from: 2013-10-04 Created: 2013-09-11 Last updated: 2014-01-23
2. Grid Connection of Permanent Magnet Generator Based Renewable Energy Systems
Open this publication in new window or tab >>Grid Connection of Permanent Magnet Generator Based Renewable Energy Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Renewable energy is harnessed from continuously replenishing natural processes. Some commonly known are sunlight, water, wind, tides, geothermal heat and various forms of biomass. The focus on renewable energy has over the past few decades intensified greatly. This thesis contributes to the research on developing renewable energy technologies, within the wind power, wave power and marine current power projects at the division of Electricity, Uppsala University. In this thesis grid connection of permanent magnet generator based renewable energy sources is evaluated.

A tap transformer based grid connection system has been constructed and experimentally evaluated for a vertical axis wind turbine. Full range variable speed operation of the turbine is enabled by using the different step-up ratios of a tap transformer. This removes the need for a DC/DC step or an active rectifier on the generator side of the full frequency converter and thereby reduces system complexity. Experiments and simulations of the system for variable speed operation are done and efficiency and harmonic content are evaluated. 

The work presented in the thesis has also contributed to the design, construction and evaluation of a full-scale offshore marine substation for wave power intended to grid connect a farm of wave energy converters. The function of the marine substation has been experimentally tested and the substation is ready for deployment. Results from the system verification are presented. Special focus is on the transformer losses and transformer in-rush currents.

A control and grid connection system for a vertical axis marine current energy converter has been designed and constructed. The grid connection is done with a back-to-back 2L-3L system with a three level cascaded H-bridge converter grid side. The system has been tested in the laboratory and is ready to be installed at the experimental site. Results from the laboratory testing of the system are presented.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2016. 79 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1436
Keyword
VAWT, H-rotor, Tap Transformer, Cascaded H-bridge Multi-Level, Renewable Energy, Wind power, Wave power, Marine Current Power
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-304659 (URN)978-91-554-9712-5 (ISBN)
Public defence
2016-11-25, Polhemsalen, 10134, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Projects
Wind PowerWave PowerMarine Currnet Power
Available from: 2016-11-03 Created: 2016-10-06 Last updated: 2016-11-16Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Leijon, MatsEkergård, BoelApelfröjd, Senadde Santiago, JuanBernhoff, HansWaters, RafaelEriksson, Sandra

Search in DiVA

By author/editor
Leijon, MatsEkergård, BoelApelfröjd, Senadde Santiago, JuanBernhoff, HansWaters, RafaelEriksson, Sandra
By organisation
Electricity
Energy Systems

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 420 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf