uu.seUppsala University Publications
Change search
ReferencesLink to record
Permanent link

Direct link
Robust identification of local adaptation from allele frequencies.
2013 (English)In: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 195, no 1, 205-20 p.Article in journal (Refereed) Published
Abstract [en]

Comparing allele frequencies among populations that differ in environment has long been a tool for detecting loci involved in local adaptation. However, such analyses are complicated by an imperfect knowledge of population allele frequencies and neutral correlations of allele frequencies among populations due to shared population history and gene flow. Here we develop a set of methods to robustly test for unusual allele frequency patterns and correlations between environmental variables and allele frequencies while accounting for these complications based on a Bayesian model previously implemented in the software Bayenv. Using this model, we calculate a set of "standardized allele frequencies" that allows investigators to apply tests of their choice to multiple populations while accounting for sampling and covariance due to population history. We illustrate this first by showing that these standardized frequencies can be used to detect nonparametric correlations with environmental variables; these correlations are also less prone to spurious results due to outlier populations. We then demonstrate how these standardized allele frequencies can be used to construct a test to detect SNPs that deviate strongly from neutral population structure. This test is conceptually related to FST and is shown to be more powerful, as we account for population history. We also extend the model to next-generation sequencing of population pools-a cost-efficient way to estimate population allele frequencies, but one that introduces an additional level of sampling noise. The utility of these methods is demonstrated in simulations and by reanalyzing human SNP data from the Human Genome Diversity Panel populations and pooled next-generation sequencing data from Atlantic herring. An implementation of our method is available from http://gcbias.org.

Place, publisher, year, edition, pages
2013. Vol. 195, no 1, 205-20 p.
National Category
Evolutionary Biology
URN: urn:nbn:se:uu:diva-207320DOI: 10.1534/genetics.113.152462PubMedID: 23821598OAI: oai:DiVA.org:uu-207320DiVA: diva2:647753
Available from: 2013-09-12 Created: 2013-09-12 Last updated: 2013-09-12

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Günther, Torsten
In the same journal
Evolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 207 hits
ReferencesLink to record
Permanent link

Direct link