uu.seUppsala University Publications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, Materials Theory.
Show others and affiliations
2013 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 117, no 29, 15421-15428 p.Article in journal (Refereed) Published
Abstract [en]

Graphene nanogaps and nanopores show potential for the purpose of electrical DNA sequencing, in particular because single-base resolution appears to be readily achievable. Here, we evaluated from first principles the advantages of a nanogap setup with functionalized graphene edges. To this end, we employed density functional theory and the non-equilibrium Green's function method to investigate the transverse conductance properties of the four nucleotides occurring in DNA when located between opposing functionalized graphene electrodes. In particular, we determined the electrical tunneling current variation as a function of the applied bias and analyzed the associated differential conductance at a voltage which appears suitable to distinguish between the four nucleotides. Intriguingly, we predict for one of the nucleotides (deoxyguanosine monophosphate) a negative differential resistance effect.

Place, publisher, year, edition, pages
2013. Vol. 117, no 29, 15421-15428 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:uu:diva-208163DOI: 10.1021/jp4048743ISI: 000322503600064OAI: oai:DiVA.org:uu-208163DiVA: diva2:651185
Available from: 2013-09-24 Created: 2013-09-24 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Molecular Electronics: Insight from Ab-Initio Transport Simulations
Open this publication in new window or tab >>Molecular Electronics: Insight from Ab-Initio Transport Simulations
2011 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents the theoretical studies of electronic transport in molecular electronic devices. Such devices have been proposed and investigated as a promising new approach that complements conventional silicon-based electronics. To design and fabricate future nanoelectronic devices, it is essential to understand the conduction mechanism at a molecular or atomic level. Our approach is based on the non-equilibrium Green's function method (NEGF) combined with density functional theory (DFT). We apply the method to study the electronic transport properties of two-probe systems consisting of molecules or atomic wires sandwiched between leads. A few molecular electronic devices are characterized; namely, conducting molecular wires, molecular switches and molecular recognition sensors. The considered applications are interconnection of different nanoelectronic units with cumulene molecular wires; adding switching functionality to the molecular connectors by applying stress to the CNT-cumulene-CNT junction or by introducing phthalocyanine unit; sensing of individual nucleotides, e.g., for DNA sequencing applications. The obtained results provide useful insights into the electron transport properties of molecules. Several interesting and significant features are analyzed and explained in particular such as, level pinning, negative differential resistance, interfering of conducting channels etc.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2011. 67 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 875
Keyword
Molecular Electronics, Ab Initio, DNA Sequencing, Nanoscience, Graphene
National Category
Condensed Matter Physics
Research subject
Physics with spec. in Atomic, Molecular and Condensed Matter Physics
Identifiers
urn:nbn:se:uu:diva-160474 (URN)978-91-554-8208-4 (ISBN)
Public defence
2011-12-08, Å80101, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2011-11-17 Created: 2011-10-24 Last updated: 2014-01-27Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Prasongkit, JariyaneeGrigoriev, AntonPathak, BiswarupAhuja, RajeevScheicher, Ralph H.

Search in DiVA

By author/editor
Prasongkit, JariyaneeGrigoriev, AntonPathak, BiswarupAhuja, RajeevScheicher, Ralph H.
By organisation
Materials Theory
In the same journal
The Journal of Physical Chemistry C
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 382 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf